首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3829篇
  免费   128篇
  国内免费   140篇
  2023年   32篇
  2022年   68篇
  2021年   74篇
  2020年   66篇
  2019年   96篇
  2018年   99篇
  2017年   74篇
  2016年   87篇
  2015年   117篇
  2014年   247篇
  2013年   269篇
  2012年   193篇
  2011年   285篇
  2010年   236篇
  2009年   184篇
  2008年   214篇
  2007年   224篇
  2006年   193篇
  2005年   154篇
  2004年   165篇
  2003年   136篇
  2002年   106篇
  2001年   70篇
  2000年   73篇
  1999年   73篇
  1998年   65篇
  1997年   53篇
  1996年   48篇
  1995年   52篇
  1994年   51篇
  1993年   45篇
  1992年   36篇
  1991年   36篇
  1990年   34篇
  1989年   16篇
  1988年   18篇
  1987年   17篇
  1986年   19篇
  1985年   13篇
  1984年   11篇
  1983年   6篇
  1982年   9篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1973年   3篇
  1970年   4篇
排序方式: 共有4097条查询结果,搜索用时 421 毫秒
51.
A quantitative endonuclease assay, which relies on the introduction of single and double strand breaks into supercoiled plasmid DNA, was used to study the activity of the extracellular nuclease of Serratia marcescens SM6 in buffer and in groundwater. The parallel enzyme concentration-dependent production of relaxed and linear plasmid molecules suggests that the nuclease produces single and double strand breaks in duplex DNA. Bovine serum albumin stimulated the nuclease activity towards DNA and RNA and increased the stability of the enzyme against thermal inactivation. The DNase activity at 4 °C and 50 °C was almost half of that at the optimum temperature (37 °C). The nuclease was active in groundwater, although the specific activity was lower than in buffer. In a groundwater aquifer microcosm, mineral-adsorbed transforming DNA was substantially less accessible to the nuclease than was dissolved DNA. The data suggest that the extracellular nuclease of Serratia marcescens may contribute to DNA turnover in the environment and that adsorption of DNA to minerals provides protection against the nuclease.Abbreviations GW groundwater GWA groundwater aquifer  相似文献   
52.
53.
Martha J. Powell 《Protoplasma》1994,181(1-4):123-141
Summary In development of the primitive fungi, chytridiomycetes, unwalled zoospores bearing single, posterior flagella are transformed into walled, round-cells which elaborate the thallus. Production, structural modification, or release of extracellular material are involved with each transition of developmental stage. This article reviews the variety and developmental changes of extracellular materials found at the cell surface of chytridiomycetes. A cell coat, produced from Golgi-derived vesicles during zoosporogenesis, is visible around free swimming zoospores of some chytridiomycetes. How the zoospore surface receives and transduces signals is not widely explored, but it is known that fenestrated cisternae and simple cisternae, which are integrated into the microbody-lipid globule complex, are spatially and structurally associated with the plasma membrane and flagellar apparatus. This spatial association, as well as the cytochemical localization of calcium in fenestrated cisternae, suggest a mechanism for signal transduction and for regulation of zoospore motility. Zoospores become encased in a new layer of extracellular material as the zoospore encysts. Among some chytrids the source of this material is preexisting vesicles which fuse with the plasma membrane. Among other zoospores, a readily identifiable population of encystment vesicles is not apparent, demonstrating that there is no single pattern or mechanism for zoospore encystment in chytridiomycetes. Encysted zoospores developing into thalli, typically produce cell walls with a microfibrillar substructure. Ultrastructural analysis of walls reveals distinctive architecture and remarkable sculpturing which have been used in systematics of some members of chytridiomycetes. Nothing is known as to underlying controls of cytoskeletal elements and plasma membrane enzyme complexes in wall biogenesis. Many changes in cell surface structures accompany thallus maturation. Septa, many traversed with plasmodesmata, are produced in most chytrid thallus types. As sporangia and resting spores prepare for the production and release of zoospores, additional extracellular layers of material are frequently produced. Polarized deposits of extracellular material become discharge plugs, discharge vesicles, or endoopercula. Interstitial material is also released into cleavage furrows. Circumscissile or localized digestion of walls produce operculate or inoperculate exit ports for zoospore release. Cryofixation preserves more extensive extracellular material than does conventional chemical fixation, and broader application of cryofixation may radically alter our current view of cell surface structure. Thus chytridiomycetes exhibit a range in patterns for the occurrence and subsequent modifications of extracellular materials, even for members within the same order. The most universally recognized role for these extracellular materials is protection. Although there is a reasonable view of the types of extracellular material involved in chytridiomycete development, we have only limited understandings of their biogenesis or roles in regulation and communication, areas awaiting more investigations.Abbreviations DIC Nomarski-differential contrast optics - TEM transmission electron microscopy  相似文献   
54.
Abstract: N -Acetylaspartylglutamate (NAAG), a prevalent peptide in the vertebrate nervous system, may be hydrolyzed by extracellular peptidase activity to produce glutamate and N -acetylaspartate. Hydrolysis can be viewed as both inactivating the peptide after synaptic release and increasing synaptic levels of ambient glutamate. To test the hypothesis that NAAG and the peptidase activity that hydrolyzes it coexist as a unique, two-stage system of chemical neurotransmission, 50 discrete regions of the rat CNS were microdissected for assay. In each microregion, the concentration of NAAG was determined by radioimmunoassay and the peptidase activity was assayed using tritiated peptide as substrate. The NAAG concentration ranged from 2.4 nmol/mg of soluble protein in median eminence to 64 in thoracic spinal cord. Peptidase activity against NAAG ranged from 54 pmol of glutamate produced per milligram of membrane protein per minute in median eminence to 148 in superior colliculus. A linear relationship was observed between NAAG peptidase and NAAG concentration in 46 of the 50 areas, with a slope of 2.26 and a correlation coefficient of 0.45. These data support the hypothesis that hydrolysis of NAAG to glutamate and N -acetylaspartate is a consistent aspect of the physiology and metabolism of this peptide after synaptic release. The ratio of peptide concentration to peptidase activity was >0.3 in the following four areas: ventrolateral medulla and reticular formation where the peptide is concentrated in axons of passage, thoracic spinal cord, where NAAG is concentrated in ascending sensory tracts as well as motoneuron cell bodies, and ventroposterior thalamic nucleus.  相似文献   
55.
The precision of extrachromosomal homologous recombination and gene targeting in plant cells was investigated. Recombination was directed to introns of selectable marker genes where potential changes could persist without affecting the function and therefore the selectability of the genes. Approximately 9 kb of crossover regions was rescued and sequenced. Changes were detected at a frequency below one point mutation per 1000 bp, indicating that extrachromosomal recombination and gene targeting both appear to occur with high fidelity.  相似文献   
56.
57.
58.
We have investigated targeting to the endoplasmic reticulum (ER) of wild-type GUS and a modified form (GUS S358) by making an N-terminal fusion of the -glucuronidase (GUS) enzyme with the wheat -amylase signal peptide.In vitro studies demonstrated that the modified GUS (S358) lacked the glycosylation site present within the wild-type enzyme. Analysis of transgenic tobacco plants revealed that the modified GUS enzyme retained activity upon passage to the ER. When further experiments were carried out to determine the cellular location of the modified GUS enzyme, it was found that (contrary to expectation) the majority of GUS activity was retained within the cell and was not secreted to the cell surface via the default pathway. The data indicated that the modified GUS enzyme is an unsuitable reporter enzyme for studying protein secretion.  相似文献   
59.
Transformation of the nuclear, chloroplast, and mitochondrial genomes can now be accomplished inChlamydomonas reinhardtii. Many biosynthetic pathways are carried out in the chloroplast, and efforts to manipulate these pathways will require that gene products be directed to this compartment. Chloroplast proteins are encoded in either the chloroplast or nuclear genome. In the latter case they are synthesized in the cytoplasm and imported post-translationally into the chloroplast. Thus, strategies for expressing foreign genes or overexpressing endogenous genes whose products reside in the chloroplast could involve either genome. This paper reviews the present status of transformation methodology for the nuclear and chloroplast genomes inChlamydomonas. Considerations for expressing gene products in the chloroplast are discussed. Experimental evidence for homologous recombination during transformation of the nuclear genome is presented.  相似文献   
60.
The Nicotiana tabacum ap24 gene encoding a protein with antifungal activity toward Phytophthora infestans has been characterized. Analysis of cDNA clones revealed that at least three ap24-like genes are induced in tobacco upon infection with tobacco mosaic virus. Amino acid sequencing of the purified protein showed that AP24 is synthesized as a preproprotein from which an amino-terminal signal peptide and a carboxyl-terminal propeptide (CTPP) are cleaved off during post-translational processing. The functional role of the CTPP was investigated by expressing chimeric genes encoding either wild-type AP24 or a mutant protein lacking the CTPP. Plants expressing the wild-type construct resulted in proteins properly sorted to the vacuole. In contrast, the proteins produced in plants expressing the mutant construct were secreted extracellularly, indicating that the CTPP is necessary for targeting of AP24 to the vacuoles. Similar results were obtained for vacuolar chitinases and -1,3-glucanases of tobacco. The extracellularly targeted mutant proteins were shown to have retained their biological activity. Together, these results suggest that within all vacuolar pathogenesis-related proteins the targeting information resides in a short carboxyl-terminal propeptide which is removed during or after transport to the plant vacuole.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号