首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2956篇
  免费   111篇
  国内免费   137篇
  2024年   3篇
  2023年   29篇
  2022年   92篇
  2021年   71篇
  2020年   78篇
  2019年   92篇
  2018年   78篇
  2017年   67篇
  2016年   73篇
  2015年   97篇
  2014年   201篇
  2013年   221篇
  2012年   189篇
  2011年   227篇
  2010年   195篇
  2009年   141篇
  2008年   156篇
  2007年   167篇
  2006年   184篇
  2005年   118篇
  2004年   111篇
  2003年   84篇
  2002年   61篇
  2001年   28篇
  2000年   41篇
  1999年   33篇
  1998年   34篇
  1997年   26篇
  1996年   27篇
  1995年   38篇
  1994年   29篇
  1993年   28篇
  1992年   22篇
  1991年   26篇
  1990年   24篇
  1989年   11篇
  1988年   14篇
  1987年   13篇
  1986年   16篇
  1985年   11篇
  1984年   9篇
  1983年   3篇
  1982年   6篇
  1981年   5篇
  1980年   5篇
  1979年   3篇
  1978年   4篇
  1976年   2篇
  1973年   3篇
  1970年   4篇
排序方式: 共有3204条查询结果,搜索用时 93 毫秒
61.
62.
Nutrient dynamics in storage organs is a complex developmental process that requires coordinated interactions of environmental, biochemical, and genetic factors. Although sink organ developmental events have been identified, understanding of translational and post‐translational regulation of reserve synthesis, accumulation, and utilization in legumes is limited. To understand nutrient dynamics during embryonic and cotyledonary photoheterotrophic transition to mature and germinating autotrophic seeds, an integrated proteomics and phosphoproteomics study in six sequential seed developmental stages in chickpea is performed. MS/MS analyses identify 109 unique nutrient‐associated proteins (NAPs) involved in metabolism, storage and biogenesis, and protein turnover. Differences and similarities in 60 nutrient‐associated phosphoproteins (NAPPs) containing 93 phosphosites are compared with NAPs. Data reveal accumulation of carbon–nitrogen metabolic and photosynthetic proteoforms during seed filling. Furthermore, enrichment of storage proteoforms and protease inhibitors is associated with cell expansion and seed maturation. Finally, combined proteoforms network analysis identifies three significant modules, centered around malate dehydrogenase, HSP70, triose phosphate isomerase, and vicilin. Novel clues suggest that ubiquitin–proteasome pathway regulates nutrient reallocation. Second, increased abundance of NAPs/NAPPs related to oxidative and serine/threonine signaling indicates direct interface between redox sensing and signaling during seed development. Taken together, nutrient signals act as metabolic and differentiation determinant governing storage organ reprogramming.  相似文献   
63.
Understanding the progression of periodontal tissue destruction is at the forefront of periodontal research. The authors aimed to capture the dynamics of gingival tissue proteome during the initiation and progression of experimental (ligature‐induced) periodontitis in mice. Pressure cycling technology (PCT), a recently developed platform that uses ultra‐high pressure to disrupt tissues, is utilized to achieve efficient and reproducible protein extraction from ultra‐small amounts of gingival tissues in combination with liquid chromatography‐tandem mass spectrometry (MS). The MS data are processed using Progenesis QI and the regulated proteins are subjected to METACORE, STRING, and WebGestalt for functional enrichment analysis. A total of 1614 proteins with ≥2 peptides are quantified with an estimated protein false discovery rate of 0.06%. Unsupervised clustering analysis shows that the gingival tissue protein abundance is mainly dependent on the periodontitis progression stage. Gene ontology enrichment analysis reveals an overrepresentation in innate immune regulation (e.g., neutrophil‐mediated immunity and antimicrobial peptides), signal transduction (e.g., integrin signaling), and homeostasis processes (e.g., platelet activation and aggregation). In conclusion, a PCT‐assisted label‐free quantitative proteomics workflow that allowed cataloging the deepest gingival tissue proteome on a rapid timescale and provided novel mechanistic insights into host perturbation during periodontitis progression is applied.  相似文献   
64.
Domestication is a condition in which the breeding, care and feeding of animals are, at least in part, controlled by humans. Information regarding the changes in the protein composition of eggs in response to domestication is very limited. Such data are prerequisite for improvements in the reproduction of domesticated fish. The aim of this study was to examine the impact of domestication on the proteome of pikeperch eggs using two-dimensional differential in-gel electrophoresis. We analysed high-quality eggs from domesticated and wild pikeperch fish to reveal proteins that were presumably only related to the domestication process and not to the quality of eggs. Here, we show that domestication has a profound impact on the protein profile of pikeperch eggs. We identified 66 differentially abundant protein spots, including 27 spots that were more abundant in wild-caught pikeperch eggs and 39 spots that were enriched in eggs collected from domesticated females. Eggs originating from wild-caught females showed higher expression levels of proteins involved in folding, apoptotic process, purine metabolism and immune response, whereas eggs of domesticated females showed higher expression levels of proteins that participated mainly in metabolism. The changes in metabolic proteins in eggs from domesticated females can reflect the adaptation of pikeperch to commercial diets, which have profoundly distinct compositions compared with natural diets. The decrease in the abundance of proteins related to immune response in eggs from the domesticated population suggests that domestication may lead to disturbances in defence mechanisms. In turn, the lower abundance of heat shock proteins in eggs of domesticated fish may indicate their adaptation to stable farming conditions and reduced environmental stressors or their better tolerance of stress from breeding. The proteins identified in this study can increase our knowledge concerning the mechanism of the pikeperch domestication process.  相似文献   
65.
Extracellular vesicles (EVs) are small membrane-bound particles that are naturally released from cells. They are recognized as potent vehicles of intercellular communication both in prokaryotes and eukaryotes. Because of their capacity to carry biological macromolecules such as proteins, lipids and nucleic acids, EVs influence different physiological and pathological functions of both parental and recipient cells. Although multiple pathways have been proposed for cytokine secretion beyond the classical ER/Golgi route, EVs have recently recognized as an alternative secretory mechanism. Interestingly, cytokines/chemokines exploit these vesicles to be released into the extracellular milieu, and also appear to modulate their release, trafficking and/or content. In this review, we provide an overview of the cytokines/chemokines that are known to be associated with EVs or their regulation with a focus on TNFα, IL-1β and IFNs.  相似文献   
66.
It is estimated that up to 10% of proteins in eukaryotes require zinc for their function. Although the majority of these proteins are located in the nucleus and cytosol, a small subset is secreted from cells or is located within an intracellular compartment. As many of these compartmentalized metalloproteins fold to their native state and bind their zinc cofactor inside an organelle, cells require mechanisms to maintain supply of zinc to these compartments even under conditions of zinc deficiency. At the same time, intracellular compartments can also be the site for storing zinc ions, which then can be mobilized when needed. In this review, we highlight insight that has been obtained from yeast models about how zinc homeostasis is maintained in the secretory pathway and vacuole.  相似文献   
67.
68.
Free amino acids (FAAs) and protein‐bound amino acids (PBAAs) in seeds play an important role in seed desiccation, longevity, and germination. However, the effect that water stress has on these two functional pools, especially when imposed during the crucial seed setting stage is unclear. To better understand these effects, we exposed Arabidopsis plants at the seed setting stage to a range of water limitation and water deprivation conditions and then evaluated physiological, metabolic, and proteomic parameters, with special focus on FAAs and PBAAs. We found that in response to severe water limitation, seed yield decreased, while seed weight, FAA, and PBAA content per seed increased. Nevertheless, the composition of FAAs and PBAAs remained unaltered. In response to severe water deprivation, however, both seed yield and weight were reduced. In addition, major alterations were observed in both FAA and proteome compositions, which indicated that both osmotic adjustment and proteomic reprogramming occurred in these naturally desiccation‐tolerant organs. However, despite the major proteomic alteration, the PBAA composition did not change, suggesting that the proteomic reprogramming was followed by a proteomic rebalancing. Proteomic rebalancing has not been observed previously in response to stress, but its occurrence under stress strongly suggests its natural function. Together, our data show that the dry seed PBAA composition plays a key role in seed fitness and therefore is rigorously maintained even under severe water stress, while the FAA composition is more plastic and adaptable to changing environments, and that both functional pools are distinctly regulated.  相似文献   
69.
Pacific geoducks (Panopea generosa) are clams found along the northeast Pacific coast where they are important components of coastal and estuarine ecosystems and a major aquaculture product. The Pacific coastline, however, is also experiencing rapidly changing ocean habitat, including significant reductions in pH. To better understand the physiological impact of ocean acidification on geoduck clams, we characterized for the first time the proteomic profile of this bivalve during larval development and compared it to that of larvae exposed to low pH conditions. Geoduck larvae were reared at pH 7.5 (ambient) or pH 7.1 in a commercial shellfish hatchery from day 6 to day 19 postfertilization and sampled at six time points for an in‐depth proteomics analysis using high‐resolution data‐dependent analysis. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development, and displayed a delay in their competency for settlement. Proteomic profiles revealed that metabolic, cell cycle, and protein turnover pathways differed between the two pH and suggested that differing phenotypic outcomes between pH 7.5 and 7.1 are likely due to environmental disruptions to the timing of physiological events. In summary, ocean acidification results in elevated energetic demand on geoduck larvae, resulting in delayed development and disruptions to normal molecular developmental pathways, such as carbohydrate metabolism, cell growth, and protein synthesis.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号