首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2834篇
  免费   100篇
  国内免费   182篇
  3116篇
  2023年   28篇
  2022年   63篇
  2021年   48篇
  2020年   67篇
  2019年   71篇
  2018年   71篇
  2017年   64篇
  2016年   55篇
  2015年   88篇
  2014年   190篇
  2013年   175篇
  2012年   147篇
  2011年   218篇
  2010年   190篇
  2009年   124篇
  2008年   153篇
  2007年   158篇
  2006年   156篇
  2005年   114篇
  2004年   113篇
  2003年   86篇
  2002年   60篇
  2001年   33篇
  2000年   47篇
  1999年   48篇
  1998年   49篇
  1997年   35篇
  1996年   41篇
  1995年   44篇
  1994年   37篇
  1993年   35篇
  1992年   28篇
  1991年   33篇
  1990年   33篇
  1989年   14篇
  1988年   23篇
  1987年   22篇
  1986年   24篇
  1985年   19篇
  1984年   17篇
  1983年   9篇
  1982年   13篇
  1981年   12篇
  1980年   11篇
  1979年   10篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1974年   6篇
  1970年   4篇
排序方式: 共有3116条查询结果,搜索用时 0 毫秒
31.
The cuticle of Gordius panigettensis (Sciacchitano, 1955) was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM). The cuticle is composed of 30-50 compact layers. The number of the layers is higher in the central part of the animal's body and decreases at the extremities. Each layer is composed of parallel tightly packed fibres approximately 640 nm in diameter and of indefinite length. The fibres run strictly parallel within each layer, while in adjoining layers they run at a variable angle from 45 degrees in the central body to 90 degrees in the extremities. Each fibre shows a barely detectable filamentous inner structure and is enveloped in a thin highly regular net formed by hexagonal meshes. Our results suggested that these fibres should be proteinaceous although non-collagenous. Thinner radial fibres run among the large fibres and across all the layers and span the whole thickness of the cuticle from the epithelial layer located deep underneath the large fibres up to the epicuticle on the external surface of the animal.  相似文献   
32.
A strain was selected by its highest extracellular polysaccharide (EPS) production ability compare to other isolates from the same rhizospheric soil. The selected strain was identified by 16S rDNA sequencing and designated as SSB81. Phylogenetic analysis of the gene sequence showed its close relatedness with Azotobacter vinelandii and Azotobacter salinestris. Maximum EPS (2.52 g l−1) was recovered when the basal medium was supplemented with glucose (2.0%), riboflavin (1 mg l−1) and casamino acid (0.2%). The EPS showed a stable viscosity level at acidic pH (3.0–6.5) and the pyrolysis temperature was found to be at 116.73 °C with an enthalpy (ΔH) of 1330.72 Jg−1. MALDI TOF mass spectrometric result suggests that polymer contained Hex5Pent3 as oligomeric building subunit. SEM studies revealed that the polymer had a porous structure with small pore size distribution indicating the compactness of the polymer. This novel EPS may find possible application as a polymer for environmental bioremediation and biotechnological processes.  相似文献   
33.
An extracellular nuclease from Bacillus firmus VKPACU-1 was multifunctional enzyme, this nuclease hydrolyzed poly U rapidly and more preferentially than the other homopolyribonucleotides. Hydrolysis of RNA this enzyme released mononucleotides in the order 5′UMP > 5′AMP > 5′GMP where as in hydrolysis of DNA the mononucleotides in the order of 5′dAMP > 5′dGMP > 5′dTMP and oligonucleotides. Uridylic linkages in RNA and adenylic linkages in DNA were preferentially cleaved by the nuclease. Nuclease produced oligonucleotides having only 3’ hydroxyl and 5’ phosphate termini. Present nuclease hydrolyzed RNA and DNA released oligonucleotides as major end products and mononucleotides, suggesting an endo mode of action.  相似文献   
34.
In the large arteries, it is believed that elastin provides the resistance to stretch at low pressure, while collagen provides the resistance to stretch at high pressure. It is also thought that elastin is responsible for the low energy loss observed with cyclic loading. These tenets are supported through experiments that alter component amounts through protease digestion, vessel remodeling, normal growth, or in different artery types. Genetic engineering provides the opportunity to revisit these tenets through the loss of expression of specific wall components. We used newborn mice lacking elastin (Eln−/−) or two key proteins (lysyl oxidase, Lox−/−, or fibulin-4, Fbln4−/−) that are necessary for the assembly of mechanically-functional elastic fibers to investigate the contributions of elastic fibers to large artery mechanics. We determined component content and organization and quantified the nonlinear and viscoelastic mechanical behavior of Eln−/−, Lox−/−, and Fbln4−/− ascending aorta and their respective controls. We confirmed that the lack of elastin, fibulin-4, or lysyl oxidase leads to absent or highly fragmented elastic fibers in the aortic wall and a 56–97% decrease in crosslinked elastin amounts. We found that the resistance to stretch at low pressure is decreased only in Eln−/− aorta, confirming the role of elastin in the nonlinear mechanical behavior of the aortic wall. Dissipated energy with cyclic loading and unloading is increased 53–387% in Eln−/−, Lox−/−, and Fbln4−/− aorta, indicating that not only elastin, but properly assembled and crosslinked elastic fibers, are necessary for low energy loss in the aorta.  相似文献   
35.
The cloning of a G protein-coupled, extracellular Ca2+ (Ca o 2+ )-sensing receptor (CaR) has afforded a molecular basis for a number of the known effects of Ca o 2+ on tissues involved in maintaining systemic calcium homeostasis, especially parathyroid gland and kidney. In addition to providing molecular tools for showing that CaR messenger RNA and protein are present within these tissues, the cloned CaR has permitted documentation that several human diseases are the result of inactivating or activating mutations of this receptor as well as generation of mice that have targeted disruption of the CaR gene. Characteristic changes in the functions of parathyroid and kidney in these patients as well as in the CaR “knockout” mice have elucidated considerably the CaR’s physiological roles in mineral ion homeostasis. Nevertheless, a great deal remains to be learned about how this receptor regulates the functioning of other tissues involved in Ca o 2+ metabolism, such as bone and intestine. Further study of these human diseases and of the mouse models will doubtless be useful in gaining additional understanding of the CaR’s roles in these latter tissues. Furthermore, we understand little of the CaR’s functions in tissues that are not directly involved in systemic mineral ion metabolism, where the receptor probably serves diverse other roles. Some of these functions may be related to the control of intra- and local extracellular concentrations of Ca2+, while others may be unrelated to either systemic or local ionic homeostasis. In any case, the CaR and conceivably additional receptors/sensors for Ca2+ or other extracellular ions represent versatile regulators of a wide variety of cellular functions and represent important targets for novel classes of therapeutics.  相似文献   
36.
The replacement of cartilage by bone is the net result of genetic programs that control chondrocyte differentiation, matrix degradation, and bone formation. Disruptions in the rate, timing, or duration of chondrocyte proliferation and differentiation result in shortened, misshapen skeletal elements. In the majority of these skeletal disruptions, vascular invasion of the elements is also perturbed. Our hypothesis is that the processes involved in endochondral ossification are synchronized via the vasculature. The purpose of this study was to examine carefully the events of vascular invasion and matrix degradation in the context of chondrocyte differentiation and bone formation. Here, we have produced a ‘molecular map’ of the initial vascularization of the developing skeleton that provides a framework in which to interpret a wide range of fetal skeletal malformations, disruptions, and dysplasias.  相似文献   
37.
The floral architecture and phenology of the tree species Albizia julibrissin (Fabaceae) offer the potential for flowers within inflorescences to share common pollen donors. Patterns of paternity within individual tree crowns may differ among isolated individuals and those in populations due to differences in pollinator foraging behavior. To determine how genetic diversity is partitioned within individual seed pools and whether these patterns differ among isolated and population trees, we obtained all fruits from three inflorescences from four clusters from three isolated trees and from three population trees in Athens, Georgia. We assayed 14 polymorphic allozymes to genotype all progeny within singly sired fruits to determine the multilocus genotype of each fruit's pollen donor. Inflorescences had multiple pollen donors, but simulation analyses revealed that redundancy of pollen donors tended to be more likely within inflorescences than randomly across the crown. Analysis of genetic and genotypic diversity indicated that individual maternal trees received pollen from many donors in uneven frequencies. Results suggest that isolated trees receive pollen from slightly fewer pollen donors and experience more within-plant pollinator movement than trees in populations. However, isolated trees receive qualitatively similar pollen from many sources, suggesting that these trees are not effectively isolated and that pollen moves long distances in this species.  相似文献   
38.
Summary The release of intact CU(I)8-thionein from copper-resistant copper-loaded yeast cells, strain X 2180-1Aa, has been shown. This copper(I)-thiolate-rich protein was characterized and compared with the chemical and physicochemical properties of intracellular yeast Cu-thionein. The same molecular mass and stoichiometry of 8 mol copper atoms/mol protein was found. No detectable difference between the Cu-thioneins was seen in luminescence emission, electronic absorption in the ultraviolet region, chiroptical data or amino acid composition. The importance of stable Cu(I)-thiolates in Cu-thionein as a safe vehicle for transporting copper in a non-reactive manner is confirmed.  相似文献   
39.
The influence of intracellular angiotensin II on the regulation of potassium current and membrane potential of smooth muscle cells of mesenteric arteries and its relevance for the regulation of vascular tone was reviewed. The presence of components of the renin angiotensin system (RAS) in different cells of the cardiovascular system, was discussed including their presence in the nuclei and mitochondria. Emphasis was given to the opposite effects of intracellular and extracellular angiotensin II (Ang II) on the regulation of potassium current, membrane potential and contractility of vascular resistance vessels and its implication to vascular physiology and pathology and the possible role of epigenetic factors on the expression of angiotensin II (Ang II) and renin in vascular resistance vessels as well as its possible pathophysiological role in hypertension and other cardiovascular diseases.  相似文献   
40.
An extracellular low temperature-active alkaline stable peptidase from Acinetobacter sp. MN 12 was purified to homogeneity with a purification fold of 9.8. The enzyme exhibited specific activity of 6,540 U/mg protein, with an apparent molecular weight of 35 kDa. The purified enzyme was active over broad range of temperature from 4 to 60 °C with optimum activity at 40 °C. The enzyme retained more than 75 % of activity over a broad range of pH (7.0–11.0) with optimum activity at pH 9.0. The purified peptidase was strongly inhibited by phenylmethylsulfonyl fluoride, giving an indication of serine type. The K m and V max for casein and gelatin were 0.3529, 2.03 mg/ml and 294.11, 384.61 μg/ml/min respectively. The peptidase was compatible with surfactants, oxidizing agents and commercial detergents, and effectively removed dried blood stains on cotton fabrics at low temperature ranging from 15 to 35 °C.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号