首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3648篇
  免费   77篇
  国内免费   148篇
  2023年   37篇
  2022年   89篇
  2021年   72篇
  2020年   82篇
  2019年   73篇
  2018年   95篇
  2017年   61篇
  2016年   64篇
  2015年   100篇
  2014年   241篇
  2013年   299篇
  2012年   175篇
  2011年   260篇
  2010年   221篇
  2009年   165篇
  2008年   221篇
  2007年   205篇
  2006年   207篇
  2005年   161篇
  2004年   157篇
  2003年   109篇
  2002年   85篇
  2001年   44篇
  2000年   42篇
  1999年   51篇
  1998年   38篇
  1997年   39篇
  1996年   39篇
  1995年   46篇
  1994年   50篇
  1993年   43篇
  1992年   36篇
  1991年   32篇
  1990年   31篇
  1989年   15篇
  1988年   24篇
  1987年   18篇
  1986年   21篇
  1985年   22篇
  1984年   17篇
  1983年   11篇
  1982年   13篇
  1981年   10篇
  1980年   11篇
  1979年   8篇
  1978年   7篇
  1976年   5篇
  1974年   5篇
  1973年   5篇
  1970年   4篇
排序方式: 共有3873条查询结果,搜索用时 15 毫秒
81.
82.
Soluble epoxide hydrolase (sEH), a novel therapeutic target for neuropathic pain, is a largely cytosolic enzyme that degrades epoxy-fatty acids (EpFAs), an important class of lipid signaling molecules. Many inhibitors of sEH have been reported, and to date, the 1,3-disubstituted urea has the highest affinity reported for the sEH among the central pharmacophores evaluated. An earlier somewhat water soluble sEH inhibitor taken to the clinic for blood pressure control had mediocre potency (both affinity and kinetics) and a short in vivo half-life. We undertook a study to overcome these difficulties, but the sEH inhibitors carrying a 1,3-disubstituted urea often suffer poor physical properties that hinder their formulation. In this report, we described new strategies to improve the physical properties of sEH inhibitors with a 1,3-disubstituted urea while maintaining their potency and drug-target residence time (a complementary in vitro parameter) against sEH. To our surprise, we identified two structural modifications that substantially improve the potency and physical properties of sEH inhibitors carrying a 1,3-disubstituted urea pharmacophore. Such improvements will greatly facilitate the movement of sEH inhibitors to the clinic.  相似文献   
83.
Extracellular vesicles (EVs) are small membrane-bound particles that are naturally released from cells. They are recognized as potent vehicles of intercellular communication both in prokaryotes and eukaryotes. Because of their capacity to carry biological macromolecules such as proteins, lipids and nucleic acids, EVs influence different physiological and pathological functions of both parental and recipient cells. Although multiple pathways have been proposed for cytokine secretion beyond the classical ER/Golgi route, EVs have recently recognized as an alternative secretory mechanism. Interestingly, cytokines/chemokines exploit these vesicles to be released into the extracellular milieu, and also appear to modulate their release, trafficking and/or content. In this review, we provide an overview of the cytokines/chemokines that are known to be associated with EVs or their regulation with a focus on TNFα, IL-1β and IFNs.  相似文献   
84.
Xyloglucan endotransglycosylase/hydrolase (XTH) enzymes play important roles in cell wall remodelling. Although previous studies have shown a pathway of evolution for XTH genes from bacterial licheninases, through plant endoglucanases (EG16), the order of development within the phylogenetic clades of true XTHs is yet to be elucidated. In addition, recent studies have revealed interesting and potentially useful patterns of transglycosylation beyond the standard xyloglucan–xyloglucan donor/acceptor substrate activities. To study evolutionary relationships and to search for enzymes with useful broad substrate specificities, genes from the ‘ancestral’ XTH clade of two monocots, Brachypodium distachyon and Triticum aestivum, and two eudicots, Arabidopsis thaliana and Populus tremula, were investigated. Specific activities of the heterologously produced enzymes showed remarkably broad substrate specificities. All the enzymes studied had high activity with the cellulose analogue HEC (hydroxyethyl cellulose) as well as with mixed-link β-glucan as donor substrates, when compared with the standard xyloglucan. Even more surprising was the wide range of acceptor substrates that these enzymes were able to catalyse reactions with, opening a broad range of possible roles for these enzymes, both within plants and in industrial, pharmaceutical and medical fields. Genome screening and expression analyses unexpectedly revealed that genes from this clade were found only in angiosperm genomes and were predominantly or solely expressed in reproductive tissues. We therefore posit that this phylogenetic group is significantly different and should be renamed as the group-IV clade.  相似文献   
85.
86.
摘要 目的:探讨与研究Aurora-A激酶对急性胰腺炎大鼠肺脏损伤的修复作用。方法:36只雄性SD大鼠均分为三组:对照组、模型组与Aurora-A组。对照组进行假手术操作,模型组建立急性胰腺炎模型后给予注射等量生理盐水治疗,Aurora-A组建立急性胰腺炎模型后给予阴茎背静脉注射鼠Aurora-A类因子-MLN8054 10 mg/kg治疗,记录大鼠肺脏损伤的修复情况。结果:造模过程中无大鼠死亡情况发生,模型组与Aurora-A组造模后2 w与4 w的肺组织病理评分、血清中性粒细胞弹性蛋白酶(neutrophil elastase,NE)与髓过氧化物酶(myeloperoxidase,MPO)含量、肺组织W/D、肺组织蛋白激酶B(AKT)、细胞外信号调节激酶1(ERK1)蛋白相对表达水平都高于对照组(P<0.05),Aurora-A组少于模型组(P<0.05)。结论:Aurora-A激酶在急性胰腺炎大鼠的应用能抑制Akt/ERK信号通路激活,减少血清NE与MPO的表达,从而促进肺脏损伤修复。  相似文献   
87.
88.
PurposeTP53, encoding the protein p53, is among the most frequently mutated genes in all cancers. A high frequency of 60 – 90% mutations is seen in esophageal squamous cell carcinoma (ESCC) patients. Certain p53 mutants show gain-of-function (GoF) oncogenic features unrelated to its wild type functions.MethodsThis study functionally characterized a panel of p53 mutants in individual ESCC cell lines and assayed for GoF oncogenic properties.ResultsThe ESCC cell line with endogenous p53R248Q expression showed suppressed tumor growth in an immunocompromised mouse model and suppressed colony growth in in vitro three-dimensional culture, when depleted of the endogenous p53 protein expression. This suppression is accompanied by suppressed cell cycle progression, along with reduced integrin expression and decreased focal adhesion kinase and extracellular-regulated protein kinase signaling and can be compensated by expression of a constitutively active mitogen-activated protein. P53R248Q enhances cell proliferation upon glutamine deprivation, as compared to other non-GoF mutants.ConclusionsIn summary, study of the functional contributions of endogenous p53 mutants identified a novel GoF mechanism through which a specific p53 mutant exerts oncogenic features and contributes to ESCC tumorigenesis.  相似文献   
89.
microRNAs (miRNAs) contained in small extracellular vesicles (sEVs) are candidates for non-invasive biomarkers. Oxaliplatin (L-OHP) has been approved for advanced colorectal cancer (CRC) chemotherapy. However, the response to L-OHP differs among CRC patients. In addition, CRC cells often acquire the resistance to L-OHP. This study aimed at the prediction of L-OHP sensitivity by measuring extracellular miRNAs levels. Firstly, we compared intracellular miRNAs expressions in L-OHP-sensitive CRC cells (SW620 and HCT116 cells) with those in acquired and intrinsic L-OHP-resistant cells. In microarray and real-time RT-PCR analyses, the intracellular miR-33a-5p, miR-210–3p, and miR-224–5p expressions were lower in acquired and intrinsic L-OHP-resistant CRC cells than sensitive cells. Furthermore, in SW620 cells, L-OHP sensitivity was decreased by miR-33a-5p inhibitor. On the other hand, miR-210–3p or miR-224–5p inhibitor did not affect L-OHP sensitivity in SW620 cells. Secondly, the amount of miR-33a-5p, miR-210–3p, and miR-224–5p in sEVs was compared. The amount of miR-33a-5p and miR-210–3p in sEVs secreted from acquired and intrinsic L-OHP-resistant cells tended to be small. miR-224–5p was not detected in sEVs secreted from three types of CRC cells examined. To the best of our knowledge, this is the first study demonstrating that miR-33a-5p and/or miR-210–3p in sEVs would be candidates for biomarkers of L-OHP sensitivity. In particular, miR-33a-5p is a promising candidate because it would be directly involved in L-OHP sensitivity.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号