首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3237篇
  免费   118篇
  国内免费   69篇
  2023年   18篇
  2022年   55篇
  2021年   65篇
  2020年   62篇
  2019年   66篇
  2018年   72篇
  2017年   67篇
  2016年   57篇
  2015年   102篇
  2014年   232篇
  2013年   202篇
  2012年   199篇
  2011年   284篇
  2010年   225篇
  2009年   150篇
  2008年   184篇
  2007年   198篇
  2006年   194篇
  2005年   148篇
  2004年   140篇
  2003年   98篇
  2002年   64篇
  2001年   32篇
  2000年   36篇
  1999年   38篇
  1998年   42篇
  1997年   30篇
  1996年   32篇
  1995年   41篇
  1994年   31篇
  1993年   32篇
  1992年   27篇
  1991年   28篇
  1990年   25篇
  1989年   14篇
  1988年   18篇
  1987年   17篇
  1986年   18篇
  1985年   11篇
  1984年   11篇
  1983年   4篇
  1982年   7篇
  1981年   10篇
  1980年   7篇
  1979年   4篇
  1978年   6篇
  1976年   4篇
  1973年   3篇
  1972年   3篇
  1970年   4篇
排序方式: 共有3424条查询结果,搜索用时 15 毫秒
101.
Interstitial collagen mechanical and biological properties are altered by proteases that catalyze the hydrolysis of the collagen triple-helical structure. Collagenolysis is critical in development and homeostasis but also contributes to numerous pathologies. Mammalian collagenolytic enzymes include matrix metalloproteinases, cathepsin K, and neutrophil elastase, and a variety of invertebrates and pathogens possess collagenolytic enzymes. Components of the mechanism of action for the collagenolytic enzyme MMP-1 have been defined experimentally, and insights into other collagenolytic mechanisms have been provided. Ancillary biomolecules may modulate the action of collagenolytic enzymes.  相似文献   
102.
Matrix metalloproteinase 8 (MMP-8) is a tumor-suppressive protease that cleaves numerous substrates, including matrix proteins and chemokines. In particular, MMP-8 proteolytically activates IL-8 and, thereby, regulates neutrophil chemotaxis in vivo. We explored the effects of expression of either a WT or catalytically inactive (E198A) mutant version of MMP-8 in human breast cancer cell lines. Analysis of serum-free conditioned media from three breast cancer cell lines (MCF-7, SK-BR-3, and MDA-MB-231) expressing WT MMP-8 revealed elevated levels of IL-6 and IL-8. This increase was mirrored at the mRNA level and was dependent on MMP-8 catalytic activity. However, sustained expression of WT MMP-8 by breast cancer cells was non-permissive for long-term growth, as shown by reduced colony formation compared with cells expressing either control vector or E198A mutant MMP-8. In long-term culture of transfected MDA-MB-231 cells, expression of WT but not E198A mutant MMP-8 was lost, with IL-6 and IL-8 levels returning to base line. Rare clonal isolates of MDA-MB-231 cells expressing WT MMP-8 were generated, and these showed constitutively high levels of IL-6 and IL-8, although production of the interleukins was no longer dependent upon MMP-8 activity. These studies support a causal connection between MMP-8 activity and the IL-6/IL-8 network, with an acute response to MMP-8 involving induction of the proinflammatory mediators, which may in part serve to compensate for the deleterious effects of MMP-8 on breast cancer cell growth. This axis may be relevant to the recognized ability of MMP-8 to orchestrate the innate immune system in inflammation in vivo.  相似文献   
103.
104.
The covalent transfer of heavy chains (HCs) from inter-α-inhibitor (IαI) to hyaluronan (HA) via the protein product of tumor necrosis factor-stimulated gene-6 (TSG-6) forms the HC-HA complex, a pathological form of HA that promotes the adhesion of leukocytes to HA matrices. The transfer of HCs to high molecular weight (HMW) HA is a reversible event whereby TSG-6 can shuffle HCs from one HA molecule to another. Therefore, HMW HA can serve as both an HC acceptor and an HC donor. In the present study, we show that transfer of HCs to low molecular weight HA oligosaccharides is an irreversible event where subsequent shuffling does not occur, i.e. HA oligosaccharides from 8 to 21 monosaccharide units in length can serve as HC acceptors, but are unable to function as HC donors. We show that the HC-HA complex is present in the synovial fluid of mice subjected to systemic and monoarticular mouse models of rheumatoid arthritis. Furthermore, we demonstrate that HA oligosaccharides can be used, with TSG-6, to irreversibly shuffle HCs from pathological, HMW HC-HA to HA oligosaccharides, thereby restoring HC-HA matrices from the inflamed joint to their normal state, unmodified with HCs. This process was also effective for HC-HA in the synovial fluid of human rheumatoid arthritis patients (in vitro).  相似文献   
105.
Neurokinin-1 receptor (NK1R) occurs naturally on human glioblastomas. Its activation mediates glioma cell proliferation. However, it is unknown whether NK1R is directly involved in tumor cell migration. In this study, we found human hemokinin-1 (hHK-1), via NK1R, dose-dependently promoted the migration of U-251 and U-87 cells. In addition, we showed that hHK-1 enhanced the activity of MMP-2 and the expression of MMP-2 and MT1-matrix metalloproteinase (MMP), which were responsible for cell migration, because neutralizing the MMPs with antibodies decreased cell migration. The involved mechanisms were then investigated. In U-251, hHK-1 induced significant calcium efflux; phospholipase C inhibitor U-73122 reduced the calcium mobilization, the up-regulation of MMP-2 and MT1-MMP, and the cell migration induced by hHK-1, which meant the migration effect of NK1R was mainly mediated through the Gq-PLC pathway. We further demonstrated that hHK-1 boosted rapid phosphorylation of ERK, JNK, and Akt; inhibition of ERK and Akt effectively reduced MMP-2 induction by hHK-1. Meanwhile, inhibition of ERK, JNK, and Akt reduced the MT1-MMP induction. hHK-1 stimulated significant phosphorylation of p65 and c-JUN in U-251. Reporter gene assays indicated hHK-1 enhanced both AP-1 and NF-κB activity; inhibition of ERK, JNK, and Akt dose-dependently suppressed the NF-κB activity; only the inhibition of ERK significantly suppressed the AP-1 activity. Treatment with specific inhibitors for AP-1 or NF-κB strongly blocked the MMP up-regulation by hHK-1. Taken together, our data suggested NK1R was a potential regulator of human glioma cell migration by the up-regulation of MMP-2 and MT1-MMP.  相似文献   
106.
Staphylococcus epidermidis, a commensal of humans, secretes Esp protease to prevent Staphylococcus aureus biofilm formation and colonization. Blocking S. aureus colonization may reduce the incidence of invasive infectious diseases; however, the mechanism whereby Esp disrupts biofilms is unknown. We show here that Esp cleaves autolysin (Atl)-derived murein hydrolases and prevents staphylococcal release of DNA, which serves as extracellular matrix in biofilms. The three-dimensional structure of Esp was revealed by x-ray crystallography and shown to be highly similar to that of S. aureus V8 (SspA). Both atl and sspA are necessary for biofilm formation, and purified SspA cleaves Atl-derived murein hydrolases. Thus, S. aureus biofilms are formed via the controlled secretion and proteolysis of autolysin, and this developmental program appears to be perturbed by the Esp protease of S. epidermidis.  相似文献   
107.
108.
Proton-gated TASK-3 K+ channel belongs to the K2P family of proteins that underlie the K+ leak setting the membrane potential in all cells. TASK-3 is under cooperative gating control by extracellular [H+]. Use of recently solved K2P structures allows us to explore the molecular mechanism of TASK-3 cooperative pH gating. Tunnel-like side portals define an extracellular ion pathway to the selectivity filter. We use a combination of molecular modeling and functional assays to show that pH-sensing histidine residues and K+ ions mutually interact electrostatically in the confines of the extracellular ion pathway. K+ ions modulate the pKa of sensing histidine side chains whose charge states in turn determine the open/closed transition of the channel pore. Cooperativity, and therefore steep dependence of TASK-3 K+ channel activity on extracellular pH, is dependent on an effect of the permeant ion on the channel pHo sensors.  相似文献   
109.
Extracellular short fibulins, fibulin-3, -4, and -5, are components of the elastic fiber/microfibril system and are implicated in the formation and homeostasis of elastic tissues. In this study, we report new structural and functional properties of the short fibulins. Full-length human short fibulins were recombinantly expressed in human embryonic kidney cells and purified by immobilized metal ion affinity chromatography. All three fibulins showed various levels of degradation after the purification procedure. N-terminal sequencing revealed that all three fibulins are highly susceptible to proteolysis within the N-terminal linker region of the first calcium-binding epidermal growth factor domain. Proteolytic susceptibility of the linker correlated with its length. Exposure of these fibulins to matrix metalloproteinase (MMP)-1, -2, -3, -7, -9, and -12 resulted in similar proteolytic fragments with MMP-7 and -12 being the most potent proteases. Fibulin-3 proteolysis was almost completely inhibited in cell culture by the addition of 25 μm doxycycline (a broad spectrum MMP inhibitor). Reducible fibulin-4 dimerization and multimerization were consistently observed by SDS-PAGE, Western blotting, and mass spectrometry. Atomic force microscopy identified monomers, dimers, and multimers in purified fibulin-4 preparations with sizes of ∼10–15, ∼20–25, and ∼30–50 nm, respectively. All short fibulins strongly adhered to human fibroblasts and smooth muscle cells. Although only fibulin-5 has an RGD integrin binding site, all short fibulins adhere at a similar level to the respective cells. Solid phase binding assays detected strong calcium-dependent binding of the short fibulins to immobilized heparin, suggesting that these fibulins may bind cell surface-located heparan sulfate.  相似文献   
110.
Human embryonic stem cells (hESCs) are pluripotent cells that have indefinite replicative potential and the ability to differentiate into derivatives of all three germ layers. hESCs are conventionally grown on mitotically inactivated mouse embryonic fibroblasts (MEFs) or feeder cells of human origin. In addition, feeder-free culture systems can be used to support hESCs, in which the adhesive substrate plays a key role in the regulation of stem cell self-renewal or differentiation. Extracellular matrix (ECM) components define the microenvironment of the niche for many types of stem cells, but their role in the maintenance of hESCs remains poorly understood. We used a proteomic approach to characterize in detail the composition and interaction networks of ECMs that support the growth of self-renewing hESCs. Whereas many ECM components were produced by supportive and unsupportive MEF and human placental stromal fibroblast feeder cells, some proteins were only expressed in supportive ECM, suggestive of a role in the maintenance of pluripotency. We show that identified candidate molecules can support attachment and self-renewal of hESCs alone (fibrillin-1) or in combination with fibronectin (perlecan, fibulin-2), in the absence of feeder cells. Together, these data highlight the importance of specific ECM interactions in the regulation of hESC phenotype and provide a resource for future studies of hESC self-renewal.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号