首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3226篇
  免费   280篇
  国内免费   81篇
  2024年   8篇
  2023年   38篇
  2022年   74篇
  2021年   108篇
  2020年   109篇
  2019年   140篇
  2018年   107篇
  2017年   87篇
  2016年   110篇
  2015年   104篇
  2014年   170篇
  2013年   212篇
  2012年   133篇
  2011年   160篇
  2010年   103篇
  2009年   115篇
  2008年   167篇
  2007年   147篇
  2006年   123篇
  2005年   109篇
  2004年   116篇
  2003年   102篇
  2002年   97篇
  2001年   99篇
  2000年   97篇
  1999年   63篇
  1998年   45篇
  1997年   50篇
  1996年   42篇
  1995年   48篇
  1994年   45篇
  1993年   42篇
  1992年   48篇
  1991年   36篇
  1990年   27篇
  1989年   22篇
  1988年   38篇
  1987年   30篇
  1986年   23篇
  1985年   15篇
  1984年   23篇
  1983年   15篇
  1982年   26篇
  1981年   14篇
  1980年   16篇
  1979年   8篇
  1977年   16篇
  1976年   11篇
  1975年   9篇
  1973年   12篇
排序方式: 共有3587条查询结果,搜索用时 765 毫秒
101.
The objective of this study was to study the effect of diabetic hyperglycemia on astrocytes after forebrain ischemia. Streptozotocin (STZ)-injected hyperglycemic and vehicle-injected normoglycemic rats were subjected to 15 minutes of forebrain ischemia. The brains were harvested in sham-operated controls and in animals with 1 and 6 h of recirculation following ischemia. Brain damage was accessed by haematoxylin and eosin (H&E) staining, cleaved caspase-3 immunohistochemistry and TdT-mediated-dUTP nick end labeling (TUNEL). Anti-GFAP antibody was employed to study astrocytes. The results showed that the 15-minute ischemia caused neuronal death after 1 and 6 h of reperfusion as revealed by increased numbers of karyopyknotic cells, edema, TUNEL-positive and active caspase-3-positive cells. Ischemia also activated astrocytes in the cingulated cortex as reflected by astrocyte stomata hypertrophy, elongated dendrites and increases in the number of dendrites, and immunoreactivity of GFAP. Diabetic hyperglycemia further enhanced neuronal death and suppressed ischemia-induced astrocyte activation. Further, diabetes-damaged astrocytes have increased withdrawal of the astrocyte end-foot from the cerebral blood vessel wall. It is concluded that diabetes-induced suppression and damages to astrocytes may contribute to its detrimental effects on recovery from cerebral ischemia.  相似文献   
102.
The long-term impacts of cerebral ischemia and diabetic ischemia on astrocytes and oligodendrocytes have not been defined. The objective of this study is to define profile of astrocyte and changes of myelin in diabetic and non-diabetic rats subjected to focal ischemia.Focal cerebral ischemia of 30-min duration was induced in streptozotocin-induced diabetic and vehicle-injected normoglycemic rats. The brains were harvested for immunohistochemistry of glial fibrillary acidic protein (GFAP) and 2'', 3''-cyclic nucleotide 3''-phosphodiesterase (CNPase) at various reperfusion endpoints ranging from 30 min up to 28 days. The results showed that activate astrocytes were observed after 30 min and peaked at 3 h to 1 day after reperfusion in ischemic penumbra, and peaked at 7 days of reperfusion in ischemic core. Diabetes inhibited the activation of astrocytes in ischemic hemisphere. Demyelination occurred after 30 min of reperfusion in ischemic core and peaked at 1 day. Diabetes caused more severe demyelination compared with non-diabetic rats. Remyelination started at 7 days and completed at 14 and 28 days in ischemic region. Diabetes inhibited the remyelination processes. It is concluded that ischemia activates astrocytes and induces demyelination. Diabetes inhibits the activation of astrocytes, exacerbates the demyelination and delays the remyelination processes. These may contribute to the detrimental effects of hyperglycemia on ischemic brain damage.  相似文献   
103.
104.
Electrotherapy with low-level direct current (DC) can induce antitu-mor effects in various tumor models. Applied in combination with certain anticancer drugs, it can significantly increase their effectiveness. It has been suggested that the demonstrated effects of electrotherapy arise from its modification of tumor blood flow. The effect of such treatment on blood perfusion of solid subcutaneous Sa-1 fibrosarcoma tumors in A/J mice was investigated with a 86rubidium extraction technique. Following electrotherapy, the relative tissue perfusion of tumors was decreased by more than 50%. Three days after treatment, partial reperfusion of tumors occurred. The dynamics of the perfusion changes induced by electrotherapy are in agreement with tumor growth dynamics following this procedure. The effect of electrotherapy on the blood supply of tumors may be the major mechanism of antitumor action in our model. Electrotherapy could be useful as an adjuvant local procedure to other treatment modalities that require a hypoxic environment for their effectiveness.  相似文献   
105.
The present study characterized the receptor‐dependent regulation of dendrite formation of noradrenaline (NA) and dopamine (DA) in cultured neurons obtained from embryonic day 16 rat cerebral cortex. Morphological diversity of cortical dendrites was analyzed on various features: dendrite initiation, dendrite outgrowth, and dendrite branching. Using a combination of immunocytochemical markers of dendrites and GABAergic neurons, we focused on the dendrite morphology of non‐GABAergic neurons. Our results showed that (1) NA inhibited the dendrite branching, (2) β adrenergic receptor (β‐AR) agonist inhibited the dendrite initiation, while promoted the dendrite outgrowth, (3) β1‐AR and β2‐AR were present in all the cultured neurons, and both agonists inhibited the dendrite initiation, while only β1‐AR agonist induced the dendrite branching; (4) DA inhibited the dendrite outgrowth, (5) D1 receptor agonist inhibited the dendrite initiation, while promoted the dendrite branching. In conclusion, this study compared the effects of NA, DA and their receptors and showed that NA and DA regulate different features on the dendrite formation of non‐GABAergic cortical neurons, depending on the receptors. © 2012 Wiley Periodicals, Inc. Develop Neurobiol 73: 370–383, 2013  相似文献   
106.
Stroke is a leading cause of death, disability, and socioeconomic loss worldwide. The majority of all strokes result from an interruption in blood flow (ischemia) 1. Middle cerebral artery (MCA) delivers a great majority of blood to the lateral surface of the cortex 2, is the most common site of human stroke 3, and ischemia within its territory can result in extensive dysfunction or death 1,4,5. Survivors of ischemic stroke often suffer loss or disruption of motor capabilities, sensory deficits, and infarct. In an effort to capture these key characteristics of stroke, and thereby develop effective treatment, a great deal of emphasis is placed upon animal models of ischemia in MCA.Here we present a method of permanently occluding a cortical surface blood vessel. We will present this method using an example of a relevant vessel occlusion that models the most common type, location, and outcome of human stroke, permanent middle cerebral artery occlusion (pMCAO). In this model, we surgically expose MCA in the adult rat and subsequently occlude via double ligature and transection of the vessel. This pMCAO blocks the proximal cortical branch of MCA, causing ischemia in all of MCA cortical territory, a large portion of the cortex. This method of occlusion can also be used to occlude more distal portions of cortical vessels in order to achieve more focal ischemia targeting a smaller region of cortex. The primary disadvantages of pMCAO are that the surgical procedure is somewhat invasive as a small craniotomy is required to access MCA, though this results in minimal tissue damage. The primary advantages of this model, however, are: the site of occlusion is well defined, the degree of blood flow reduction is consistent, functional and neurological impairment occurs rapidly, infarct size is consistent, and the high rate of survival allows for long-term chronic assessment.  相似文献   
107.
With the recent development of retinal prostheses, it is important to develop reliable techniques for assessing the safety of these devices in preclinical studies. However, the standard fixation, preparation, and automated histology procedures are not ideal. Here we describe new procedures for evaluating the health of the retina directly adjacent to an implant. Retinal prostheses feature electrode arrays in contact with eye tissue. Previous methods have not been able to spatially localize the ocular tissue adjacent to individual electrodes within the array. In addition, standard histological processing often results in gross artifactual detachment of the retinal layers when assessing implanted eyes. Consequently, it has been difficult to assess localized damage, if present, caused by implantation and stimulation of an implanted electrode array. Therefore, we developed a method for identifying and localizing the ocular tissue adjacent to implanted electrodes using a (color-coded) dye marking scheme, and we modified an eye fixation technique to minimize artifactual retinal detachment. This method also rendered the sclera translucent, enabling localization of individual electrodes and specific parts of an implant. Finally, we used a matched control to increase the power of the histopathological assessments. In summary, this method enables reliable and efficient discrimination and assessment of the retinal cytoarchitecture in an implanted eye.  相似文献   
108.
Cerebral amyloid angiopathy is caused by deposition of the amyloid β-peptide which consists of mainly 39–40 residues to the cortical and leptomeningeal vessel walls. There are no definite in vitro systems to support the hypothesis that the vascular basement membrane may act as a scaffold of amyloid β-peptide carried by perivascular drainage flow and accelerate its amyloid fibril formation in vivo. We previously reported the critical roles of interfaces and agitation on the nucleation of amyloid fibrils at low concentrations of amyloid β-peptide monomers. Here, we reproduced the perivascular drainage flow in vitro by using N-hydroxysuccinimide-Sepharose 4 Fast flow beads as an inert stirrer in air-free wells rotated at 1 rpm. We then reproduced the basement membranes in the media of cerebral arteries in vitro by conjugating Matrigel and other proteins on the surface of Sepharose beads. These beads were incubated with 5 μM amyloid β(1–40) at 37 °C without air, where amyloid β(1–40) alone does not form amyloid fibrils. Using the initiation time of fibril growth kinetics (i.e., the lag time of fibril growth during which nuclei, on-pathway oligomers and protofibrils are successively formed) as a parameter of the efficiency of biological molecules to induce amyloid fibril formation, we found that basement membrane components including Matrigel, laminin, fibronectin, collagen type IV and fibrinogen accelerate the initiation of amyloid β-peptide fibril growth in vitro. These data support the essential role of vascular basement membranes in the development of cerebral amyloid angiopathy.  相似文献   
109.
Alzheimer's disease (AD) is the most common form of neurodegeneration and the major cause of dementia. This multifactorial disorder is clinically defined by progressive behavioural and cognitive deficits, and neuropathologically characterized by β‐amyloid aggregation, hyperphosphorylated tau and neuroinflammation. Oridonin, a diterpenoid isolated from Chinese herb Rabdosia rubescens, has multiple biological properties, especially anti‐inflammatory and neuroregulatory activities. Potential therapeutic effects of Oridonin were investigated in an animal model of cerebral amyloidosis for AD, transgenic APP/PS1 mice. Oridonin was suspended in carboxymethylcellulose or loaded with a nanostructured emulsion, and was orally administrated or injected. Before, during and following the experimental treatments, behavioural tests were performed with these transgenic mice and their naive littermates. Following relatively short‐term treatments of 10 days, brain tissue of mice were removed for immunohistochemical assays. The results indicate that both oral treatment and injection of Oridonin significantly attenuated β‐amyloid deposition, plaque‐associated APP expression and microglial activation in brain of transgenic mice. Furthermore, injection of Oridonin‐nanoemulsion ameliorated deficits in nesting, an important affiliative behaviour, and in social interaction. Additional in vitro studies indicated that Oridonin effectively attenuated inflammatory reaction of macrophage and microglial cell lines. Our results suggest that Oridonin might be considered a promising therapeutic option for human AD or other neurodegenerative diseases.  相似文献   
110.
《Autophagy》2013,9(9):1321-1333
Cerebral ischemia-reperfusion (I-R) is a complex pathological process. Although autophagy can be evoked by ischemia, its involvement in the reperfusion phase after ischemia and its contribution to the fate of neurons remains largely unknown. In the present investigation, we found that autophagy was activated in the reperfusion phase, as revealed in both mice with middle cerebral artery occlusion and oxygen-glucose deprived cortical neurons in culture. Interestingly, in contrast to that in permanent ischemia, inhibition of autophagy (by 3-methyladenine, bafilomycin A1, Atg7 knockdown or in atg5?/? MEF cells) in the reperfusion phase reinforced, rather than reduced, the brain and cell injury induced by I-R. Inhibition of autophagy either with 3-methyladenine or Atg7 knockdown enhanced the I-R-induced release of cytochrome c and the downstream activation of apoptosis. Moreover, MitoTracker Red-labeled neuronal mitochondria increasingly overlapped with GFP-LC3-labeled autophagosomes during reperfusion, suggesting the presence of mitophagy. The mitochondrial clearance in I-R was reversed by 3-methyladenine and Atg7 silencing, further suggesting that mitophagy underlies the neuroprotection by autophagy. In support, administration of the mitophagy inhibitor mdivi-1 in the reperfusion phase aggravated the ischemia-induced neuronal injury both in vivo and in vitro. PARK2 translocated to mitochondria during reperfusion and Park2 knockdown aggravated ischemia-induced neuronal cell death. In conclusion, the results indicated that autophagy plays different roles in cerebral ischemia and subsequent reperfusion. The protective role of autophagy during reperfusion may be attributable to mitophagy-related mitochondrial clearance and inhibition of downstream apoptosis. PARK2 may be involved in the mitophagy process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号