首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29703篇
  免费   2896篇
  国内免费   2464篇
  2024年   78篇
  2023年   542篇
  2022年   581篇
  2021年   851篇
  2020年   1202篇
  2019年   1337篇
  2018年   1180篇
  2017年   1112篇
  2016年   1276篇
  2015年   1339篇
  2014年   1704篇
  2013年   2410篇
  2012年   1429篇
  2011年   1677篇
  2010年   1166篇
  2009年   1628篇
  2008年   1662篇
  2007年   1671篇
  2006年   1524篇
  2005年   1323篇
  2004年   1128篇
  2003年   1067篇
  2002年   1015篇
  2001年   804篇
  2000年   735篇
  1999年   570篇
  1998年   573篇
  1997年   482篇
  1996年   404篇
  1995年   427篇
  1994年   337篇
  1993年   284篇
  1992年   287篇
  1991年   198篇
  1990年   218篇
  1989年   178篇
  1988年   87篇
  1987年   89篇
  1986年   74篇
  1985年   60篇
  1984年   71篇
  1983年   44篇
  1982年   52篇
  1981年   34篇
  1980年   33篇
  1979年   40篇
  1978年   20篇
  1977年   15篇
  1976年   13篇
  1973年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
831.
Remote underwater videos are widely employed to assess the structure and composition of reef fish assemblages but the sampling effort employed on each survey differs considerably, indicating that both the number of assessments and video length could be optimized. We searched for this optimal sampling effort in remote video samples to conduct rapid assessments of community composition and discussed the relation between number of replicates and video length, and how it impacts the method's efficiency to characterize species assemblages. Remote video recordings from tropical reefs in northeastern Brazil were used to investigate how fish species richness and composition builds across time and number of assays. Videos as short as 5 min successfully recorded species richness, requiring about five repetitions to record most species that compose 80% of the total biomass. Recording species composition required even less time in these reefs, setting a minimum of 3 min with the same five videos. By comparing the detected richness per analysed time unit, we found several shorter videos recorded for more species than a few longer videos, indicating that increasing the sampling coverage in the reef area might be better than just extending the video length for rapid assessments.  相似文献   
832.
Free-roaming equids (i.e., feral horses [Equus caballus] and burros [Equus asinus]) are widely distributed and locally abundant across the rangelands of the western United States. The 1971 Wild Free Roaming Horse and Burro Act (WFRHBA) gave the Bureau of Land Management (BLM) and United States Forest Service (USFS) the legal authority to manage these animals on designated public lands. To fulfill this responsibility, federal agencies established an Appropriate Management Level (AML), defined as the number of horses or burros that can be sustained on a given management unit under prevailing environmental conditions and land uses. Although the WFRHBA specifies that feral equids must be managed in ecological balance with other land uses, including conservation of native wildlife, population control measures such as gathers, contraception, and adoptions have failed to keep pace with intrinsic growth rates. Over 80% of federally managed herds currently exceed prescribed population levels, making the potential for competition between native ungulates and feral equids a growing concern among state wildlife agencies. Mule deer (Odocoileus hemionus), pronghorn (Antilocapra americana), elk (Cervus canadensis), and bighorn sheep (Ovis canadensis) are of ecological and economic value to the states where they occur, and all exhibit some degree of distributional, habitat, or dietary overlap with horses or burros. Notwithstanding the scale of the problem, to date there have been no range-wide assessments of competition potential among native and feral ungulates for space, forage, or water. To address this need, we compiled demographic, jurisdictional, and species occurrence data collected from 2010–2019 by federal and state agencies. We used these data to map the distributions of 4 native ungulate species across federal equid management units (FEMUS) in 10 western states (n = 174). We then made within-state rankings of the 50 units that were ≥2 times over AML and encompassed ≥3 native ungulates. Collectively, FEMUs covered approximately 225,000 km2, representing 18% of all BLM and USFS lands in affected states. Each FEMU supported ≥1 native ungulate and 14% contained all 4. The degree of overlap between native and feral species varied by state, ranging from <1% for mule deer in Montana, to 40% for bighorn sheep in Nevada. Oregon had the largest proportion of units that supported all 4 native ungulates (58%), whereas Montana and New Mexico had the fewest equids, but all populations were over target densities. Despite the perception that the problem of equid abundance is limited to the Great Basin states, high intrinsic growth rates and social constraints on management practices suggest all affected states should monitor range conditions and native ungulate demography in areas where forage and water resources are limited and expanding equid populations are a concern. © 2021 The Wildlife Society.  相似文献   
833.
Nutrient enrichment can reduce ecosystem stability, typically measured as temporal stability of a single function, e.g. plant productivity. Moreover, nutrient enrichment can alter plant–soil interactions (e.g. mycorrhizal symbiosis) that determine plant community composition and productivity. Thus, it is likely that nutrient enrichment and interactions between plants and their soil communities co-determine the stability in plant community composition and productivity. Yet our understanding as to how nutrient enrichment affects multiple facets of ecosystem stability, such as functional and compositional stability, and the role of above–belowground interactions are still lacking. We tested how mycorrhizal suppression and phosphorus (P) addition influenced multiple facets of ecosystem stability in a three-year field study in a temperate steppe. Here we focused on the functional and compositional stability of plant community; functional stability is the temporal community variance in primary productivity; compositional stability is represented by compositional resistance, turnover, species extinction and invasion. Community variance was partitioned into population variance defined as community productivity weighted average of the species temporal variance in performance, and species synchrony defined as the degree of temporal positive covariation among species. Compared to treatments with mycorrhizal suppression, the intact AM fungal communities reduced community variance in primary productivity by reducing species synchrony at high levels of P addition. Species synchrony and population variance were linearly associated with community variance with the intact AM fungal communities, while these relationships were decoupled or weakened by mycorrhizal suppression. The intact AM fungal communities promoted the compositional resistance of plant communities by reducing compositional turnover, but this effect was suppressed by P addition. P addition increased the number of species extinctions and thus promoted compositional turnover. Our study shows P addition and AM fungal communities can jointly and independently modify the various components of ecosystem stability in terms of plant community productivity and composition.  相似文献   
834.
Yinghui Yang  Cang Hui 《Oikos》2021,130(2):260-273
Competitive intransitivity is mostly considered outside the main body of coexistence theories that rely primarily on the role of niche overlap and differentiation. How the interplay of competitive intransitivity and niche overlap jointly affects species coexistence has received little attention. Here, we consider a rock–paper–scissors competition system where interactions between species can represent the full spectra of transitive–intransitive continuum and niche overlap/differentiation under different levels of competition asymmetry. By comparing results from pair approximation that only considers interference competition between neighbouring cells in spatial lattices, with those under the mean-field assumption, we show that 1) species coexistence under transitive competition is only possible at high niche differentiation; 2) in communities with partial or pure intransitive interactions, high levels of niche overlap are not necessary to beget species extinction; and 3) strong spatial clustering can widen the condition for intransitive loops to facilitate species coexistence. The two mechanisms, competitive intransitivity and niche differentiation, can support species persistence and coexistence, either separately or in combination. Finally, the contribution of intransitive loops to species coexistence can be enhanced by strong local spatial correlations, modulated and maximised by moderate competition asymmetry. Our study, therefore, provides a bridge to link intransitive competition to other generic ecological theories of species coexistence.  相似文献   
835.
Environmental conditions can modify the intensity and sign of ecological interactions. The stress gradient hypothesis (SGH) predicts that facilitation becomes more important than competition under stressful conditions. To properly test this hypothesis, it is necessary to account for all (not a subset of) interactions occurring in the communities and consider that species do not interact at random but following a specific pattern. We aim to assess elevational changes in facilitation, in terms of species richness, frequency and intensity of the interaction as a function of the evolutionary relatedness between nurses and their associated species. We sampled nurse and their facilitated plant species in two 1000–2000 m. elevation gradients in Mediterranean Chile where low temperature imposes a mortality filter on seedlings. We first estimated the relative importance of facilitation as a mechanism adding new species to communities distributed along these gradients. We then tested whether the frequency and intensity of facilitation increases with elevation, taking into account the evolutionary relatedness of the nurse species and the facilitated species. We found that nurses increase the species richness of the community by up to 35%. Facilitative interactions are more frequent than competitive interactions (56% versus 44%) and facilitation intensity increased with elevation for interactions involving distantly related lineages. Our results highlight the importance of including an evolutionary dimension in the study of facilitation to have a clearer picture of the mechanisms enabling species to coexist and survive under stressful conditions. This knowledge is especially relevant to conserve vulnerable and threatened communities facing new climate scenarios, such as those located in Mediterranean-type ecosystems.  相似文献   
836.
Invasive wild pigs (Sus scrofa), also called feral swine or wild hogs, are recognized as among the most destructive invasive species in the world. Throughout the United States, invasive wild pigs have expanded rapidly over the past 40 years with populations now established in 38 states. Of the estimated 6.9 million wild pigs distributed throughout the United States, Texas supports approximately 40% of the population and similarly bears disproportionate ecological and economic costs. Genetic analyses are an effective tool for understanding invasion pathways and tracking dispersal of invasive species such as wild pigs and have been used recently in California and Florida, USA, which have similarly long-established populations and high densities of wild pigs. Our goals were to use molecular approaches to elucidate invasion and migration processes shaping wild pig populations throughout Texas, compare our results with patterns of genetic structure observed in California and Florida, and provide insights for effective management of this invasive species. We used a high-density single nucleotide polymorphism (SNP) array to evaluate population genetic structure. Genetic clusters of wild pigs throughout Texas demonstrate 2 distinct patterns: weakly resolved, spatially dispersed clusters and well-resolved, spatially localized clusters. The disparity in patterns of genetic structure suggests disparate processes are differentially shaping wild pig populations in various localities throughout the state. Our results differed from the patterns of genetic structure observed in California and Florida, which were characterized by localized genetic clusters. These differences suggest distinct biological and perhaps anthropogenic processes are shaping genetic structure in Texas. Further, these disparities demonstrate the need for location-specific management strategies for controlling wild pig populations and mitigating associated ecological and economic costs. © 2021 The Wildlife Society. This article has been contributed to by US Government employees and their work is in the public domain in the USA.  相似文献   
837.
如何准确地模拟物种宏观丰富度格局和特有性中心是生物多样性保护工作的重点,也是生物地理学的热点话题。西南地区是我国壳斗科植物最丰富的地区之一,但物种多样性格局及环境驱动机制尚不清楚。本研究基于西南地区161种壳斗科植物7258个分布点位数据,利用点格局法和物种分布模型两种方式构建了物种丰富度、加权特有性指数和校正加权特有性指数的分布格局,并采用空间自回归模型(SAR)分析上述3个多样性指数与环境因子间的关系。总体上看,物种分布模型模拟的3个指数在空间上比点格局法更为连续,但数值高低分布情况具有相似性: 两种方式模拟的物种丰富度高值区主要分布在滇南边缘、桂北部和桂西南部地区(62~89种);加权特有性指数最大值集中在滇南和桂西地区(1.77~5.02);藏东南、秦岭-大巴山、桂西南部和滇东南地区具有最高的校正加权特有性指数(0.07~0.17)。SAR模型结果显示:最干月降雨量、温度季节性变化标准差、海拔变幅和土壤有机碳含量对物种丰富度的影响均显著,最干月降雨量、温度季节性变化标准差、潜在蒸散量和海拔变幅对加权特有性有着显著影响,温度季节性变化标准差、最干月降雨量、历史温度变化、增强型植被指数变异系数和海拔变幅对校正加权特有性的影响显著;SAR模型对物种丰富度、特有性指数和加权特有性指数的拟合效果(R2=0.857、0.733、0.593)分别优于普通线性模型(R2=0.689、0.425、0.422)。综上,水分可获得性、气候季节性、生境异质性、历史气候变化和土壤状况是制约西南地区壳斗科丰富度和特有性分布的最重要因素。滇南、滇东南、桂西南、桂西、秦岭-大巴山以及藏东南地区是壳斗科物种丰富度中心或特有性中心,应受到重点关注和保护。  相似文献   
838.
该研究以宽阔水国家级自然保护区野生草本植物为研究对象,依据不同生境类型共选取10个样地进行调查,分析草本植物物种组成、区系特点及物种多样性的变化规律,为保护区草本植物物种多样性研究提供基础资料。结果表明:(1)样地内共有草本植物58科183属277种(含种下分类单位),以菊科(Asteraceae)、唇形科(Lamiaceae)、禾本科(Poaceae)和荨麻科(Urticaceae)为优势科;以凤仙花属(Impatiens)、堇菜属(Viola)、蓼属(Persicaria)和冷水花属(Pilea)为优势属。(2)在分布区类型中,科的热带分布成分最多,这与保护区所处的中亚热带植被环境的特点相吻合,属的温带地理分布比重最大(61.69%),但温带分布属内含种数较少,均以单种属为主,相反热带分布属的种数较多,并且属级在区系性质的分析中和科级相比更为敏感和可靠;由科和属的性质递变来看,热带性与温带性成分相互渗透,有较明显的过渡特征,属级的地理分布反映出保护区草本植物区系属于亚热带向暖温带过渡分布的性质。(3)各样地中草本植物群落组成有较大的差异,不同样地草本植物群落的α多样性指数与丰富度指数的变化格局不完全一致,但总体变化趋势是一致的,均在样地7的草本植物群落中达到峰值;相异性系数和Cody指数变化格局较为一致,总体呈现上升的趋势;样地8中草本植物多样性指数偏低,受人为干扰因素影响较大。  相似文献   
839.
Species delimitation is a key foundation for exploring biodiversity. However, the existence of continuous phenotypic variation in widespread species challenges accurate species delimitation based on classical taxonomy. In this study, we investigated the cryptic diversity of a widespread herb (Roscoea tibetica Batalin) in a biodiversity hotspot (the Hengduan Mountains, China) using genotyping by sequencing, examining morphological traits, developing species distribution models, and simulating demographic history. Phylogenomic reconstruction, principal component analysis, and genetic structure inferences indicated that previously reported R. tibetica comprised two monophyletic lineages with a deep divergence. Several morphological diagnostic characteristics were discovered from field and common garden that corresponded to these independent evolutionary lineages. Species distribution models illustrated significant ecological divergence between both lineages. All evidence strongly supported that R. tibetica, as described in previous taxonomy, actually comprises two distinct species. Model test of gene flow and effective population size changes in fastsimcoal2, and a negative Tajima's D-value suggested that recent contact likely occurred between the two lineages. Our results proposed that cryptic diversity in previously reported R. tibetica was possibly associated with phenotypic plasticity in heterogeneous environments and morphological convergence in similar habitats. This study suggests that caution should be exercised when attempting to gain biological insight into species with large-scale morphological variation, and species delimitation should be done in advance.  相似文献   
840.
Geoclimatic factors related to the uplift of the Himalaya and the Quaternary climatic oscillations influence the population genetic connectivity in the Himalaya–Hengduan Mountains (HHM) biodiversity hotspot. Therefore, to explore the relative roles played by these two factors, we examined the population dynamics and dispersal corridors of Incarvillea arguta (Royle) Royle incorporating ensemble species distribution modelling (SDM). Thirty‐seven populations were genotyped using plastid chloroplast DNA and low copy nuclear gene (ncpGS) sequences. Phylogeographic analysis was carried out to reveal the genetic structure and lineage differentiation. Ensemble SDMs were carried out for distributional change in the last glacial maximum, present, and future. Finally, the least cost path method was used to trace out possible dispersal corridors. The haplotypes were divided into four clades with strong geographical structure. The late Miocene origin of I. arguta in the western Himalaya ca. 7.92 Ma indicates lineage diversification related to the uplift of the HHM. The variability in habitat connectivity revealed by SDM is due to change in suitability since the Pleistocene. A putative dispersal corridor was detected along the drainage systems and river valleys, with strong support in the eastern Hengduan Mountains group. Our results support the signature of geoclimatic influence on population genetic connectivity of I. arguta in the HHM. We proposed that the major drainage systems might have assisted the rapid dispersal of isolated riverine plant species I. arguta in the HHM. The population genetic connectivity, using the fine‐tuned ensemble SDMs, enables scientists and policymakers to develop conservation strategies for the species gene pool in the HHM biodiversity hotspots.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号