首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3233篇
  免费   56篇
  国内免费   79篇
  2023年   8篇
  2022年   25篇
  2021年   15篇
  2020年   15篇
  2019年   40篇
  2018年   45篇
  2017年   38篇
  2016年   27篇
  2015年   63篇
  2014年   118篇
  2013年   126篇
  2012年   118篇
  2011年   126篇
  2010年   139篇
  2009年   215篇
  2008年   186篇
  2007年   195篇
  2006年   154篇
  2005年   149篇
  2004年   128篇
  2003年   116篇
  2002年   60篇
  2001年   56篇
  2000年   71篇
  1999年   93篇
  1998年   91篇
  1997年   77篇
  1996年   59篇
  1995年   68篇
  1994年   68篇
  1993年   53篇
  1992年   52篇
  1991年   54篇
  1990年   50篇
  1989年   58篇
  1988年   48篇
  1987年   45篇
  1986年   31篇
  1985年   33篇
  1984年   37篇
  1983年   16篇
  1982年   30篇
  1981年   20篇
  1980年   25篇
  1979年   19篇
  1978年   17篇
  1977年   23篇
  1976年   30篇
  1973年   10篇
  1972年   13篇
排序方式: 共有3368条查询结果,搜索用时 15 毫秒
71.
-Amylases are the key enzymes involved in the hydrolysis of starch in plants. The polymerase chain reaction (PCR) was used to detect polymorphisms in the length of amplified sequences between the annealing sites of two primers derived from published -amy1 gene sequences in barley. These two primers (Bsw1 and Bsw7), flanking the promoter region and the first exon, amplified two PCR fragments in barley. One of the amplified products, with the expected length of 820 bp, appeared together with another shorter PCR band of around 750 bp. This 750-bp fragment seems to be derived from an -amylase gene not reported previously. Both of the PCR products could be amplified from the two-rowed barley varieties tested, including cv Himalaya from which the sequence information was obtained. Five of the six-rowed barley varieties also have the two PCR fragments whereas another two have only the long fragment. These two fragments seem to be unique to barley, neither of them could be amplified from other cereals; for example, wheat, rye or sorghum. These two -amylase fragments were mapped to the long arm of 6H, the location of the -amy1 genes, using wheat-barley addition lines. Amplification of genomic DNA from wild barley accessions with primers Bsw1 and Bsw7 indicated that both of the fragments could be present, or the long and short fragments could be present alone. The results also demonstrated that the genes specifying these two fragments could be independent from each other in barley. The conserved banding pattern of these two fragments in the two-rowed barley varieties implies that artificial selection from these genes may have played an important role in the evolution of cultivated barley from wild barley.  相似文献   
72.
Phylogenetic and taxonomic difficulties are common within the woody bamboos, due to their unique life cycle, which severely limits the availability of floral characters. To addresss some of these problems, 20 species of woody bamboos in the genus Phyllostachys were analyzed using nuclear restriction fragment length polymorphisms (RFLPs). The RFLP data were used to generate genetic distances between all pairs of taxa and to examine the degree of genetic variation within and among bamboo species. The genetic distances were also used to create dendrograms of accessions and species. These trees supported the current division of the genus into two sections and provided some information on the thorny taxonomic problems in this group. We show that RFLPs can be used for species identification and the delineation of species limits.  相似文献   
73.
Degradation of halogenated aliphatic compounds: The role of adaptation   总被引:1,自引:0,他引:1  
Abstract: A limited number of halogenated aliphatic compounds can serve as a growth substrate for aerobic microorganisms. Such cultures have (specifically) developed a variety of enzyme systems to degrade these compounds. Dehalogenations are of critical importance. Various heavily chlorinated compounds are not easily biodegraded, although there are no obvious biochemical or thermodynamic reasons why microorganisms should not be able to grow with any halogenated compound. The very diversity of catabolic enzymes present in cultures that degrade halogenated aliphatics and the occurrence of molecular mechanisms for genetic adaptation serve as good starting points for the evolution of catabolic pathways for compounds that are currently still resistant to biodegradation.  相似文献   
74.
75.
We report differences in the thermal biology, elevational, temporal and geographic distributions of sympatric clones of the widespread asexual house gecko, Lepidodactylus lugubris. The two most common L. lugubris clones in Fiji, clones 2NA and 2NB, differ significantly in preferred temperature as measured in a laboratory heat gradient, but were similar in critical thermal maximum and minimum. Significant differences were found in the relative frequency of clones 2NA, 2NB, and a third Fijian clone, clone 3NB, at seven sites along an elevational gradient in Fiji. Clone 2NB was not collected at sites above 235 m, consistent with its higher preferred temperature, whereas clone 2NA was captured as high as 835 m. Clone 3NB was extremely rare at sealevel (1% of all individuals at three sites below 100 m), but predominated at the two highest-elevation sites (42% and 100%). Clones 2NA and 2NB did not differ significantly in their activity time or ambient activity temperature at low-elevation sites. Clone 3NB however, was active on significantly cooler nights at two of those sites. These significant inter-clonal differences in spatial and temporal distribution should allow a more complete utilization of resources by the assemblage of clones than by any single clonal genotype, and may promote coexistence of clones at a within-island and within-site scale. Clone 2NA, which is the most common clone in Fiji and has the broadest elevational distribution, also has the widest geographic distribution. It was the predominant clone at 27 of 34 sites surveyed in nine Pacific archipelagoes. This suggests that the ecological attributes that favor this clone in Fiji also favor it elsewhere in the Pacific despite differing environmental conditions and clonal composition in those areas.  相似文献   
76.
Pollen mitosis in the slipper orchid Cypripedium fasciculatum was studied using correlated methods of immunofluorescence and transmission electron microscopy. Unlike the more highly evolved orchids, the cypripedioid orchids shed pollen as monosulcate monads. Prior to pollen mitosis, the microspore nucleus migrates to a proximal position opposite the aperture, as is typical of monocotyledons. There is no distinct generative pole microtubule system (GPMS) like that recently reported in development of pollen polarity in the vandoid moth orchid Phalaenopsis. Instead, microtubules in early prophase are concentrated around the nucleus and extend into the cytoplasm toward the future generative pole. Once the nucleus has migrated to the continuous surface opposite the aperture, microtubules surround the nucleus evenly and show no tendency to be more concentrated in the generative domain. The mitotic spindle, which develops from the perinuclear microtubules, is asymmetrically placed in the microspore and is cone-shaped. The generative pole is broad and closely appressed to the continuous spore surface, while the vegetative pole is pointed and located in the interior of the microspore. As the chromosomes move poleward, microtubules proliferate in the interzone and a phragmoplast develops. The phragmoplast expands in a hemispherical path beyond the interzone following an array of microtubules that radiates from the generative nucleus. Data from this study indicate that evolution of pollen in orchids includes a shift in location of the generative cell from proximal to distal and the evolution of a GPMS, in addition in the well-known trend toward increased pollen aggregation and loss of exine.  相似文献   
77.
酶电泳资料和系统与进化植物学研究综述   总被引:39,自引:0,他引:39  
酶电泳资料和系统与进化植物学研究综述葛颂(中国科学院植物研究所系统与进化植物学开放研究实验室北京100093)关键词同工酶,电泳,植物系统学,进化ELECTROPHORETICDATAANDSTUDIESOFPLANTSYSTEMATICSANDEV...  相似文献   
78.
In Drosophila melanogaster transformants, the alcohol dehydrogenase (Adh) genes from D. affinidisjuncta and D. grimshawi show similar levels of expression except in the adult midgut where the D. affinidisjuncta gene is expressed about 10- to 20-fold more strongly. To study the arrangement of cis-acting sequences responsible for this regulatory difference, homologous restriction sites were used to create a series of chimeric genes that switched fragments from the 5 and 3 flanking regions of these two genes. Chimeric genes were introduced into the germ-line of D. melanogaster, and Adh gene expression was analyzed by measuring RNA levels. Various gene fragments in the promoter region and elsewhere influence expression in the adult midgut and in whole larvae and adults. Comparison of these results with earlier studies involving chimeras between the D. affinidisjuncta and D. hawaiiensis genes indicates that expression in the adult midgut is influenced by multiple regulatory sequences and that distinct arrangements of regulatory sequences can result in similar levels of expression both in the adult midgut and in the whole organism.  相似文献   
79.
TOL plasmid pWW0 from Pseudomonas putida mt-2 encodes catabolic enzymes required for the oxidation of toluene and xylenes. The structural genes for these catabolic enzymes are clustered into two operons, the xylCMABN operon, which encodes a set of enzymes required for the transformation of toluene/xylenes to benzoate/toluates, and the xylXYZLTEGFJQKIH operon, which encodes a set of enzymes required for the transformation of benzoate/toluates to Krebs cycle intermediates. The latter operon can be divided physically and functionally into two parts, the xylXYZL cluster, which is involved in the transformation of benzoate/toluates to (methyl)catechols, and the xylTEGFJQKIH cluster, which is involved in the transformation of (methyl)catechols to Krebs cycle intermediates. Genes isofunctional to xylXYZL are present in Acinetobacter calcoaceticus, and constitute a benzoate-degradative pathway, while xylTEGFJQKIH homologous encoding enzymes of a methylphenol-degradative pathway and a naphthalene-degradative pathway are present on plasmid pVI150 from P. putida CF600, and on plasmid NAH7 from P. putida PpG7, respectively. Comparison of the nucleotide sequences of the xylXYZLTEGFJQKIH genes with other isofunctional genes suggested that the xylTEGFJQKIH genes on the TOL plasmid diverged from these homologues 20 to 50 million years ago, while the xylXYZL genes diverged from the A. calcoaceticus homologues 100 to 200 million years ago. In codons where amino acids are not conserved, the substitution rate in the third base was higher than that in synonymous codons. This result was interpreted as indicating that both single and multiple nucleotide substitutions contributed to the amino acid-substituting mutations, and hence to enzyme evolution. This observation seems to be general because mammalian globin genes exhibit the same tendency.  相似文献   
80.
Summary The DNA at the chromosomal termini of all eukaryotes from which it has been isolated contains a characteristic sequence motif consisting of tandem arrays of a regular or irregular repeat unit. These terminal repeats are thought to be essential for the maintenance of the chromosome ends. The sequences of the terminal repeats of all vertebrates studied thus far are identical and are similar enough to those of higher plants and some protozoans to cross-hybridize. However, previous studies have not detected cross-hybridization between the DNA of Drosophila mélanogaster and the terminal DNA sequences of any of several organisms tested. Recently, the first terminal DNA clone from a multicellular invertebrate, that of Ascaris lumbricoides, was reported also to consist of a tandem reiteration of a short sequence similar to those previously identified for other eukaryotes. Here I show that a probe for this sequence from A. lumbricoides fails to hybridize delectably to the DNA of D. melanogaster. Thus, in contrast to their conservation among vertebrates, the terminal chromosomal sequences appear not to be shared by all metazoan invertebrates.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号