首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   5篇
  2007年   3篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有41条查询结果,搜索用时 31 毫秒
21.
The freeze‐tolerant larvae of the goldenrod gall fly (Eurosta solidaginis) undergo substantial alterations to their molecular physiology during the winter including the production of elevated quantities of glycerol and sorbitol, which function as cryoprotectants to survive whole body freezing. Production of these cryoprotectants depends on cytosolic pools of nicotinamide adenine dinucleotide phosphate H (NADPH), a major source being the pentose phosphate pathway (PPP). Glucose‐6‐phosphate dehydrogenase (G6PDH) mediates the rate‐limiting and committed step of the PPP and therefore its molecular properties were explored in larvae sampled from control versus frozen states. G6PDH was purified from control (5°C) and frozen (?15°C) E. solidaginis larvae by a single‐step chromatography method utilizing 2′,5′‐ADP agarose and analyzed to determine its enzymatic parameters. Studies revealed a decrease in Km for G6P in the frozen animals (to 50% of control values) suggesting an increased flux through the PPP. Immunoblotting of the purified enzyme showed differences in the relative extent of several posttranslational modifications, notably ubiquitination (95% decrease in frozen larvae), cysteine nitrosylation (61% decrease), threonine (4.1 fold increase), and serine phosphorylation (59% decrease). Together these data suggested that the increased flux through the PPP needed to generate NADPH for cryoprotectants synthesis is regulated, at least in part, through posttranslational alterations of G6PDH.  相似文献   
22.
Possible links between cold-tolerance and desiccation resistance were examined between larvae of the goldenrod gall fly collected from Michigan, southern Ohio, and Alabama locations as their host plant senesced. After acclimation to 5°C, Michigan-collected larvae were more cold-tolerant (25% survival after a 96 h exposure to −40°C) than larvae from Ohio (10% survival) and Alabama (0% survival). Increased cold-tolerance was partially linked to higher concentrations of the cryoprotectant glycerol (Michigan: 500 ± 30 mmol; Ohio: 270 ± 20; Alabama: 220 ± 20). Moreover, cryoprotectants may have functioned to reduce rates of overall and cuticular water loss for Michigan larvae, 0.10 ± 0.01 and 0.037 ± 0.003 μg mm−2 h−1, respectively, values that were 40-44% lower than those for Ohio and Alabama larvae and may represent a link between desiccation resistance and cold-tolerance. After acclimation to 20°C, Alabama-collected larvae had metabolic rates that were 40% lower than those from Ohio and Michigan that averaged 0.100 ± 0.006 μl of CO2 produced g−1 h−1. The lower metabolic rate of Alabama-collected larvae at 20°C likely resulted in reduced respiratory transpiration that may represent a mechanism to maintain water balance at the higher overwintering temperatures they typically experience.  相似文献   
23.
Evidence of poor correspondence between an insect herbivore’s oviposition preferences and the performance of its offspring has generally been attributed either to maladaptive behavior of the insect mother or inadequate measurement by the researcher. In contrast, we hypothesize that many cases of “bad mothers” in herbivores may be a byproduct of the hierarchical way natural selection works on resistance in host plants. Epistatic selection on the components of resistance (i.e., antixenosis and antibiosis) may generate negative genetic correlations between the resistance components, which could counteract the efforts of herbivores to oviposit on the best hosts for the performance of their offspring. In common garden and greenhouse experiments, we measured aspects of antixenosis and antibiosis resistance in 26 genets of tall goldenrod, Solidago altissima, against two common herbivores: the gall-inducing fly Eurosta solidaginis and the spittlebug Philaenus spumarius. Goldenrod antixenosis and antibiosis were positively correlated against E. solidaginis and negatively correlated against P. spumarius. Analogously, population-wide preference–performance correlations were positive for the gall flies and negative for the spittlebugs. Several natural history differences between the two insects could make gall flies better mothers, including better synchrony of the phenologies of the flies and the host plant, the much narrower host range of the gall flies than the spittlebugs, and the more sedentary lifestyle of the gall fly larvae than the spittlebug nymphs. If these results are typical in nature, then negative genetic correlations in antixenosis and antibiosis in plants may often result in zero or negative population-wide correlations between preference and performance in herbivores, and thus may be an important reason why herbivorous insects often appear to be bad mothers.  相似文献   
24.
Host-associated mating is crucial in maintaining the partial reproductive isolation between the host races of Eurosta solidaginis (Diptera: Tephritidae), a fly that forms galls on Solidago altissima and S. gigantea. (We refer to flies reared from S. gigantea as gigantea flies and those reared from S. altissima as altissima flies.) We measured the host preference of males and females of both host races, F1 hybrids between the host races, F2, and backcrosses to both host races. Male and female altissima flies and female gigantea flies had high host fidelity, whereas male gigantea flies had low host fidelity. This result suggests that there may be gene flow between the host races due to nonassortative mating that occurs when male gigantea mate with altissima females on S. altissima. This indicates assortative-mating mechanisms in addition to host-associated mating are required to produce the partial reproductive isolation between the host races that has been observed. Nongenetic factors had no influence on host preference. Larval conditioning did not influence host preference: reciprocal F1 hybrids reared in S. altissima and S. gigantea both preferred S. gigantea. Adult experience had no impact on host preference: females preferred their natal host plant regardless of which host they encountered first as an adult. The hypothesis that maternal effects influence preferences was rejected because male and female flies did not show a consistent preference for the host plant of their mother. We also found no evidence that preference was a sex-linked trait because F1 and backcrosses to the host races with different combinations of X chromosomes from the two host races preferred S. gigantea. Our results indicate that host preference is not determined by a large number of genes because preference of hybrids did not correspond to the proportion of the genome derived from each host race. The strength of the ovipuncture preference for S. gigantea by gigantea females, the females of both reciprocal F1 hybrids, the backcross to gigantea, and F2s indicates that preference is inherited nonadditively at a limited number of loci. The F1 female hybrids, however, had a weaker host preference for S. gigantea than the pure gigantea host race, indicating that there may be incomplete dominance or modifier loci. Males had different host preference patterns than females, with individual male gigantea and male F1 hybrids usually exhibiting preference exclusively for S. gigantea or S. altissima. One hypothesis explaining the difference in host preference between males and females is that the same gene influences both female and male host preference, but it is a sex-influenced gene. Thus, males carrying the gene for S. gigantea preference have an intermediate host preference, whereas females have a strong host preference to S. gigantea. In summary, we found that the host preference that produces host-associated mating is inherited nonadditively at a relatively small number of loci on autosomal genes. This mode of inheritance meets the assumptions of models of sympatric speciation, indicating that the host races could have evolved in sympatry.  相似文献   
25.
We determined the phylogenetic relationships and geographic distribution of mitochondrial haplotypes of two host races of the tephritid fly Eurosta solidaginis, a gallmaker that attacks species of goldenrod (Solidago). We performed a preliminary survey by sequencing 492 bp from the 3′ ends of the mitochondrial cytochrome oxidase I and II subunits from a single individual from eight S. gigantea- and 10 S. altissima-associated populations across their range in eastern North America and from two outgroup species, Eurosta comma (two populations) and E. cribrata. Eurosta solidaginis haplotypes fell into two groups (“E” and “W” clades), which differed by four substitutions, one of which occurred within the recognition site of the DdeI restriction enzyme. We used the presence or absence of the restriction site to survey a total of 11 S. gigantea (20 individuals) and 20 S. altissima (43 individuals) host-race populations. All gigantea-fly haplotypes regardless of geographic origin carried the E-clade haplotype, whereas altissima-fly haplotypes were geographically partitioned. Altissima flies east of Michigan were of haplotype E, whereas those west of Michigan were of haplotype W, with mixed populations found in lower Michigan. These patterns confirm an earlier allozyme survey that suggested that S. altissima is the ancestral host for the gallmaker, but also suggest that the gigantea fly populations were derived from eastern U.S. altissima fly populations. The data support the conclusions of behavioral and ecological studies indicating that the shift to the derived host was facilitated by escape from natural enemies.  相似文献   
26.
Summary Plant resistance to insect herbivores may derive from traits influencing herbivore preference, traits influencing the suitability of the plant as a host, or both. However, the plant traits influencing host-plant selection by ovipositing insect herbivores may not completely overlap those traits that affect larval survival, and distinct traits may exhibit different levels of genetic vs. environmental control. Therefore, resource supply to the host plant could affect oviposition preference and larval performance differently in different plant genotypes. To test this hypothesis, the effects of resistance level, plant genotype, and resource supply to the host plant on oviposition preference and larval performance of a gallmaking herbivore, and on various plant traits that could influence these, were examined. Replicates of four genotypes of Solidago altissima, grown under low, medium, or high levels of nutrient supply in full sun or with medium levels of nutrients in shade, were exposed to mass-released Eurosta solidaginis. The number of plants ovipunctured was significantly affected by plant genotype and the interaction between genotype and nutrient supply to the host plant: one susceptible and one resistant genotype were more preferred, and preference tended to increase with nutrient supply in the more-preferred genotypes. The growth rate of ovipunctured plants during the oviposition period was significantly greater than that of unpunctured plants. Bud diameter (which was strongly correlated with plant growth rate), leaf area, and leaf water content were significant determinants of the percentage of plants ovipunctured, explaining 74% of the variance. The number of surviving larvae was significantly affected by plant genotype, but no effect of nutrient or light supply to the host plant was detected. The ratio of bud diameter to bud length was positively related to the percentage of ovipunctured plants that formed galls, suggesting that the accurate placement of eggs near the apical meristem by ovipositing females may be easier in short, thick buds. No significant correlation was observed between oviposition preference and larval survival at the population level. These results suggest that the plant traits affecting oviposition preference may exhibit different magnitudes of phenotypic plasticity than those affecting larval survival, and that the degree of phenotypic plasticity in plant traits affecting oviposition preference may differ among genotypes within a species.  相似文献   
27.
Third-instar larvae of the goldenrod gall fly Eurosta solidaginis (Diptera: Tephritidae) survive extended periods in winter during which tissue water is frozen. Both low temperature and reduced water activity during freezing present challenges for the structural integrity of cellular lipids. Fatty acids of both phospholipids and triacylglycerols from fat body cells of E. solidaginis were analyzed throughout fall and early winter, a period that encompasses the acquisition of freeze-tolerance, to determine if adaptations to freezing include changes in fatty acid unsaturation. The five most abundant fatty acids from both fractions were (in decreasing order) oleic (40–65%), palmitoleic (18–20%), palmitic (12–17%), linoleic (5–10%), and stearic acids (4 –7%). This represents a typical complement of Dipteran fatty acids, although oleic acid levels were higher in E. solidaginis than those reported from other Dipterans (˜28%; Downer 1985). From September to November, monounsaturates increased from 59 to 70% in phospholipids at the expense of saturated fatty acids (25% –20%) suggesting activation of a Δ9-desaturase enzyme. These changes resulted in an increase in the ratio of unsaturated to saturated fatty acids (U/S) from 3.0 to 4.2, although there was no change in the average number of double bonds per fatty acid (unsaturation index, UI ≈ 1.2 in phospholipids and 0.9 in triacylglycerols throughout the season). These changes were temporally correlated to decreasing ambient temperatures and increasing larval and fat body cell freeze-tolerance. Accepted: 31 October 1996  相似文献   
28.
The geographic mosaic theory of coevolution predicts that geographic variation in species interactions will lead to differing selective pressures on interacting species, producing geographic variation in the traits of interacting species (Thompson 2005). We supported this hypothesis in a study of the geographic variation in the interactions among Eurosta solidaginis and its natural enemies. Eurosta solidaginis is a fly (Diptera: Tephritidae) that induces galls on subspecies of tall goldenrod, Solidago altissima altissima and S. a. gilvocanescens. We measured selection on E. solidaginis gall size and shape in the prairie and forest biomes in Minnesota and North Dakota over an 11-year period. Galls were larger and more spherical in the prairie than in the forest. We supported the hypothesis that the divergence in gall morphology in the two biomes is due to different selection regimes exerted by natural enemies of E. solidaginis. Each natural enemy exerted similar selection on gall diameter in both biomes, but differences in the frequency of natural enemy attack created strong differences in overall selection between the prairie and forest. Bird predation increased with gall diameter, creating selection for smaller-diameter galls. A parasitic wasp, Eurytoma gigantea, and Mordellistena convicta, an inquiline beetle, both caused higher E. solidaginis mortality in smaller galls, exerting selection for increased gall diameter. In the forest there was stabilizing selection on gall diameter due to a combination of bird predation on larvae in large galls, and M. convicta- and E. gigantea-induced mortality on larvae in small galls. In the prairie there was directional selection for larger galls due to M. convicta and E. gigantea mortality on larvae in small galls. Mordellistena convicta-induced mortality was consistently higher in the prairie than in the forest, whereas there was no significant difference in E. gigantea-induced mortality between biomes. Bird predation was nonexistent in the prairie so the selection against large galls found in the forest was absent. We supported the hypothesis that natural enemies of E. solidaginis exerted selection for spherical galls in both biomes. In the prairie M. convicta exerts stabilizing selection to maintain spherical galls. In the forest there was directional selection for more spherical galls. Eurytoma gigantea exerted selection on gall shape in the forest in a complex manner that varied among years. We also supported the hypothesis that E. gigantea is coevolving with E. solidaginis. The parasitoid had significantly longer ovipositors in the prairie than in the forest, indicating the possibility that it has evolved in response to selection to reach larvae in the larger-diameter prairie galls.  相似文献   
29.
Ecologists have labored to find an explanation for the lack of a positive correlation between host preference and offspring performance in herbivorous insects. This study focuses on how one herbivore species can influence another herbivore species’ ability to accurately assess the suitability of different host-plant genotypes for larval development. In particular, we examined the role that an early season xylem-feeding homopteran (meadow spittlebug, Philaenus spumarius) has on the preference-performance correlation of a late-season dipteran stem galler (Eurosta solidaginis) among different goldenrod genotypes. In a greenhouse, we released adult stem gallers into replicate cages that contained ramets from four different goldenrod genotypes crossed with three densities of spittlebugs (0, 1, or 8 nymphs placed 2 weeks previously on each ramet). Spittlebug feeding caused a density-dependent decline in ramet growth rates, which in turn caused a corresponding decrease in host-plant preference by the stem gallers (number of ovipunctures per bud or proportion of ramets attacked). Goldenrod genotype and the interaction between spittlebugs and genotypes also influenced host-plant preference by the stem galler. Goldenrod genotype had the greatest impact on stem galler offspring performance (gall size or survivorship). Spittlebug density also affected performance, but only through its interaction with goldenrod genotype. On some genotypes, the survivorship of stem-galler larvae decreased with increasing spittlebug density, while on other genotypes, survivorship remained unchanged, or actually increased, with increasing spittlebug density. This suggests that there was genetic variance among goldenrod genotypes in their norms of reaction for their suitability as a host to the stem gallers. One possible explanation for why spittlebugs caused a significant reduction in preference, but not in performance, was that spittlebugs had very few long-term effects on the host plant. Flower number, flowering phenology, and the allocation of the ramet’s biomass to different structures (below-ground organs, stems, leaves, and flowers) were unchanged with respect to spittlebug density. The only effect of spittlebugs was a 3–4% decrease in ramet height at the end of the growing season. We argue that the lack of a positive correlation between host-plant preference and larval performance may reflect a constraint on the discriminatory ability of female stem gallers. The damage to goldenrods caused by spittlebugs prior to attack by the stem gallers is similar in effect to potentially innumerable other causes of goldenrod stress (e.g., reduction in ramet growth rates). As a consequence, stem gallers may not be able to discern the subtle differences among stresses that identify those that will negatively affect the fitness of stem-galler offspring. The fact that goldenrod genotypes differ in their response to stresses would only further complicate the host-selection process. We propose that the stem gallers may have evolved a strategy that uses simple cues as the basis for rejecting similarly stressed plants, whether all of those plant genotype-stress combinations reduce performance or not. Received: 26 January 1999 / Accepted: 2 June 1999  相似文献   
30.
Recent research in community genetics has examined the effects of intraspecific genetic variation on species diversity in local communities. However, communities can be structured by a combination of both local and regional processes and to date, few community genetics studies have examined whether the effects of instraspecific genetic variation are consistent across levels of diversity. In this study, we ask whether host-plant genetic variation structures communities of arthropod inquilines within distinct habitat patches – rosette leaf galls on tall goldenrod ( Solidago altissima ). We found that genetic variation determined inquiline diversity at both local and regional spatial scales, but that trophic-level responses varied independently of one another. This result suggests that herbivores and predators likely respond to heritable plant traits at different spatial scales. Together, our results show that incorporating spatial scale is essential for predicting the effects of genetically variable traits on different trophic levels and levels of diversity within the communities that depend on host plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号