首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
  2020年   1篇
  2019年   1篇
  2012年   1篇
  2010年   1篇
  2009年   1篇
  2008年   5篇
  2007年   3篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   2篇
  1999年   3篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1985年   1篇
排序方式: 共有40条查询结果,搜索用时 109 毫秒
11.
We report behavioral evidence that Eurosta solidaginis, a stem-galling tephritid fly, has formed host races on its two goldenrod hosts, Solidago altissima and S. gigantea. Previous work has shown that flies from each host plant differ electrophoretically at the level of host races. The two host-associated populations were truly sympatric and were frequently found on host plants of the two species growing interdigitated with each other. Each host-associated population demonstrated a strong preference for ovipuncturing its own host. The S. gigantea–associated population emerged 10 to 14 d earlier than the S. altissima–associated population, contributing to the reproductive isolation between populations. Partial reproductive isolation is also maintained by a preference for mating on the host from which the fly emerged. The populations meet the criteria established for host races, suggesting that they may be in an intermediate stage of sympatric speciation.  相似文献   
12.
We examined the effects of the rhizome galling fly, Eurosta comma (Wiedemann), on rhizome mass and nitrogen allocation in a clone of its goldenrod host plant, Solidago missouriensis Nutt. In comparison to ungalled ramets, galled ramets initiated significantly fewer new rhizomes, and allocated less mass to leaves and stems and more to roots. Galled ramets had lower concentrations of nitrogen in roots and rhizomes but leaf and stem nitrogen concentrations were not affected. In the second year of our study, outbreaks of the leaf-eating beetle, Trirhabda canadensis (Kirby), occurred in three of our four study clones, removing ∼20%, ∼50%, and 100% of leaf area from clones 2–4, respectively. In the most heavily grazed clones, the influence of rhizome galls on plant resource allocation was least pronounced. Despite the overwhelming immediate impact of grazing, the presence of a gall population may be important because they decrease the ability of S. missouriensis clones to initiate new rhizomes and hence to recover from defoliation. Received: 28 December 1997 / Accepted: 28 December 1998  相似文献   
13.
1. Information on the movement of insects is critical to understanding the spatial spread, dynamics, and genetic structure of their populations, as well as their interactions with other species. With this in mind, the movement behaviour of the stem‐galling fly Eurosta solidaginis Fitch (Diptera: Tephritidae) was investigated. 2. Fluorescent‐marked adults were released at a single location within pure patches of the host plant, tall goldenrod Solidago altissima, and their distributions censused repeatedly throughout the day. 3. Following their release, male and female flies redistributed themselves in a manner that was well described by a simple‐diffusion model. The diffusion rate was independent of fly density and time since flies were released. 4. Female flies dispersed at a significantly faster rate, and therefore farther on average, than males. Based on the diffusion model, it was estimated that at 2.5–3.0 h post release, males and females had a median dispersal distance of only 2.0 and 2.5 m respectively. Furthermore, 95% of the males were estimated to have dispersed no more than 5.9 m, and females no more than 6.4 m. 5. Post‐release censuses suggested that flies were most active during mid morning, disappeared from the site at a rate of 10–15% per hour (most likely due to mortality), and survived for less than 2 days. Based on the rate of spread, diel activity, and liberal estimates of longevity in the field, 50% of the ovipositing females were predicted to have had a maximum lifetime range of movement within a patch of hosts of ≤ 51 m (95% were expected to have been limited to ≤ 130 m). 6. These data are used to assess whether the absence of a positive correlation between host‐plant preference and offspring performance in this system could be due to the limited scale of dispersal of this species relative to the spatial scale at which its oviposition behaviour has been studied.  相似文献   
14.
Environmental catastrophes, such as severe drought, can reduce host-plant quality and/or abundance, which in turn decrease levels of herbivore populations. Such changes in herbivore populations affect populations of their natural enemies. As part of a long-term field experiment (1983–1991), galls of Eurosta solidaginis from 16 fields in central Pennsylvania were systematically collected from goldenrod ramets. Galls were dissected to compare the occurrence of E. solidaginis mortality caused by its natural enemies in 2 drought years (1988, 1991) with 5 pre-drought years (1983–1987) and 2 post-drought years (1989–1990). Gall diameters were significantly smaller in both drought years and early larval death significantly decreased E. solidaginis survivorship in the first drought year. Of the natural enemies, the parasitoid wasp Eurytoma gigantea caused significant selection for larger gall size in all pre-drought years, the 1991 drought, and both post-drought years, due to its differential attack of smaller galls. In spite of drought-induced small gall size in 1988, there was negligible selection on gall size by natural enemies. However, populations of E. solidaginis did suffer local extirpations at nine of the 16 fields during the first drought year and population recoveries of the gall inducer and natural enemies varied among fields in the post-drought years. As a consequence of reduced herbivore abundance in drought and post-drought years, some natural-enemy populations were absent. Drought therefore drastically reduced the abundance of E. solidaginis and natural enemies resulting in slow recoveries to pre-drought numbers. Received: 16 April 1998 / Accepted: 4 August 1998  相似文献   
15.
Hutchinson's ecological theater and evolutionary play is a classical view of evolutionary ecology—ecology provides a template in which evolution occurs. An opposing view is that ecological and evolutionary changes are like two actors on a stage, intertwined by density and frequency dependence. These opposing views correspond to hard and soft selection, respectively. Although often presented as diametrically opposed, both types of selection can occur simultaneously, yet we largely lack knowledge of the relative importance of hard versus soft selection in the wild. I use a dataset of 3000 individual gall makers from 15 wild local populations over 5 years to investigate the hardness of selection. I show that enemy attack consistently favors some gall sizes over others (hard selection) but that these biases can be fine-tuned by density and frequency dependence (soft selection). As a result, selection is hard and soft in roughly equal measures, but the importance of each type varies as species interactions shift. I conclude that eco-evolutionary dynamics should occur when a mix of hard and soft selection acts on a population. This work contributes to the rapprochement of disparate views of evolutionary ecology—ecology is neither a rigid theater nor a flexible actor, but instead embodies components of both.  相似文献   
16.
A key adaptation for any parasitoid insect is the sensory modality that it uses to locate its host insect. All members of the speciose family Tachinidae (Diptera) are parasitoids, but only flies of the tribe Orminini use acoustic cues to find their hosts. Ormiine flies are parasitoids of various genera of crickets and katydids. Gravid females of one ormiine species, Ormia ochracea, hear the reproductive calling song of male field crickets and home in on those calls to locate their hosts. While many flies possess various kinds of ears to detect airborne sounds, only ormiine flies have been reported to possess true tympanal hearing organs. Such organs are wellknown to occur in their cricket and katydid hosts. The ormiine ear is an evolutionary innovation within Diptera. Our objective was to trace the phylogenetic origins of the tympanal hearing organ among higher flies. Since the ormiine hearing organ is a complex organ within the prothorax, we examined possible precursor structures in the prothoraces of selected Diptera. We have uncovered a suite of characters that define the ormiine ear. These characters in the prothorax include a pair of prosternal tympanal membranes, a pair of chordotonal sensory organs, and modifications of the tracheal system. We have been able to identify and trace the presumptive homologs of these ormiine characters through selected species of related Diptera, using the method of outgroup comparison.Dedicated to the memory of Dr. Edmund A. ArbasThis work was supported by grants from NIH (5RO1 DC 00103), NIMH (IKOS MH01148-01), NSF (240-1879A) and Hatch (NYC-191403) to R.R.H. and the Swiss Science Foundation and the Janggen-Pöhn Foundation to D.R.  相似文献   
17.
Summary The capacity for polyol synthesis by larvae of Eurosta solidaginis was evaluated under aerobic versus anoxic (N2 gas atmosphere) conditions. Glycerol production occurred readily in aerobic larvae at 13°C. Under anoxic conditions, however, net glycerol accumulation was only 57% of the aerobic value after 18 d, but the total hydroxyl equivalents available for cryoprotection were balanced by the additional synthesis of sorbitol. The efficiency of carbon conversion to polyols was much lower in anaerobic larvae. The ATP requirement of glycerol biosynthesis necessitated a 22% greater consumption of carbohydrate, when anaerobic and resulted in the accumulation of equimolar amounts of l-lactate and l-alanine as fermentative end products. The ratio of polyols produced to glycolytic end products formed was consistent with the use of the hexose monophosphate shunt to generate the reducing equivalents needed for cryoprotectant synthesis. A comparable experiment analyzed sorbitol synthesis at 3°C under aerobic versus anoxic conditions. Sorbitol synthesis was initiated more rapidly in anaerobic larvae, and the final sorbitol levels attained after 18 d were 60% higher than in aerobic larvae. The enhanced sorbitol output under anoxia may be due to an obligate channeling of a high percentage of total carbon flow through the hexose monophosphate shunt at 3°C. Carbon processed in this way generates NADPH which, along with the NADH output of glycolysis, must be reoxidized if anaerobic ATP synthesis is to continue. Redox balance within the hexose monophosphate shunt is maintained through NADPH consumption in the synthesis of sorbitol.  相似文献   
18.
19.
Gall insects can avoid and alter indirect plant defenses   总被引:2,自引:1,他引:1  
Parasitic species can dramatically alter host traits. Some of these parasite-induced changes can be considered adaptive manipulations that benefit the parasites. Gall-inducing insects are parasites well known for their ability to alter host-plant morphology and physiology, including the distribution of plant defensive compounds. Here it was investigated whether gall-inducing species alter indirect plant defenses, involving the release of volatile compounds that are attractive to foraging natural enemies. Using field and factorial laboratory experiments, volatile production by goldenrod (Solidago altissima) plants was examined in response to attack by two gall-inducing species, the tephritid fly Eurosta solidaginis and the gelechiid moth Gnorimoschema gallaesolidaginis, as well as the meadow spittlebug, Philaenus spumarius, and the generalist caterpillar Heliothis virescens. Heliothis virescens elicited strong indirect defensive responses from S. altissima, but the gall-inducing species and spittlebugs did not. More significantly, infestation by E. solidaginis appeared to suppress volatile responses to subsequent attack by the generalist caterpillar. The extensive control that E. solidaginis apparently exerts over host-plant defense responses may reduce the predation risk for the gall inducer and the subsequent herbivore, and could influence community-level dynamics, including the distribution of herbivorous insect species associated with S. altissima parasitized by E. solidaginis.  相似文献   
20.
Extrinsic, host-associated environmental factors may influence postmating isolation between herbivorous insect populations and represent a fundamentally ecological cause of speciation. We investigated this issue in experiments on hybrids between the host races of Eurosta solidaginis, a fly that induces galls on the goldenrods Solidago altissima and S. gigantea. To do so, we measured the performance of parental host races and their hybrids on five genotypes of S. gigantea and nine genotypes of S. altissima to test hypotheses about how variation in plant genotype affects performance (i.e., fitness) and potentially influences gene flow between these host races. We found that rates of gall induction and of survival to adult emergence by hybrid larvae were significantly lower than those of both parental host races on both host species, adding support to the hypothesis that there is partial postmating isolation between the host races. Hybrid flies significantly varied in their performance across plant genotypes of both host species. A significant interaction between the effects of plant genotype and mating treatment (parental vs. hybrid crosses) on larval performance indicated that the relative suitability of particular plant genotypes differed between the parental host races and their hybrids. These patterns illustrate a poor correspondence between optimal parental and hybrid environments, consistent with the hypothesis that these host races are partially isolated due to extrinsic (ecological) factors. Based on these findings, we discuss the possibility that plant genotypes in which hybrid performance is high can facilitate hybridization and gene flow between partially reproductively isolated populations of herbivorous insects, thus affecting the dynamics of ecological speciation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号