首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   697篇
  免费   39篇
  国内免费   67篇
  2024年   2篇
  2023年   9篇
  2022年   8篇
  2021年   17篇
  2020年   13篇
  2019年   23篇
  2018年   17篇
  2017年   13篇
  2016年   13篇
  2015年   16篇
  2014年   33篇
  2013年   32篇
  2012年   30篇
  2011年   35篇
  2010年   33篇
  2009年   32篇
  2008年   37篇
  2007年   29篇
  2006年   33篇
  2005年   24篇
  2004年   24篇
  2003年   29篇
  2002年   35篇
  2001年   26篇
  2000年   21篇
  1999年   32篇
  1998年   25篇
  1997年   22篇
  1996年   27篇
  1995年   14篇
  1994年   18篇
  1993年   11篇
  1992年   9篇
  1991年   7篇
  1990年   14篇
  1989年   2篇
  1988年   10篇
  1987年   6篇
  1986年   2篇
  1985年   9篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
排序方式: 共有803条查询结果,搜索用时 474 毫秒
81.
Hydrodistillation of the dried leaves of eleven species of the genus Eucalyptus L 'Hér ., i.e., E. astringens Maiden , E. camaldulensis Dehnh ., E. diversifolia Bonpl ., E. falcata Turcz ., E. ficifolia F. Muell ., E. gomphocephala DC., E. lehmannii (Schauer ) Benth ., E. maculata Hook ., E. platypus Hook ., E. polyanthemos Schauer, and E. rudis Endl ., harvested from Korbous arboreta (region of Nabeul, northeast of Tunisia) in April 2006, afforded essential oils in yields varying from 0.1±0.1 to 3.8±0.1%, dependent on the species. E. astringens and E. ficifolia showed the highest and the lowest mean percentage of essential oil amongst all the species examined, respectively. Analysis by GC (RI) and GC/MS allowed the identification of 138 components, representing 74.0 to 99.1% of the total oil. The contents of the different samples varied according to the species. The main components were 1,8‐cineole, followed by trans‐pinocarveol ( 1 ), spathulenol ( 2 ), α‐pinene, p‐cymene, (E,E)‐farnesol, cryptone, globulol ( 3 ), β‐phellandrene, α‐terpineol, viridiflorol, and α‐eudesmol. The principal‐component and the hierarchical‐cluster analyses separated the eleven Eucalyptus leaf essential oils into seven groups, each constituting a chemotype.  相似文献   
82.
Mnesampela privata Guenée (Lepidoptera: Geometridae: Ennominae) is a native Australian geometrid that conducts considerable host assessment prior to ovipositing on its host plants, which belong to the genus Eucalyptus . The leaves of some of their hosts are covered with a particularly thick and waxy cuticle and we have shown that epicuticular waxes influence the oviposition preferences of females. This necessitates that M. privata has evolved specific chemosensory organs to assess the identity and perhaps even the quality of its hosts. In this work, we examined the morphology of tarsal taste sensilla and the sensitivity of their sensory neurones to a range of primary metabolites possibly influential on host assessment and oviposition. The ventral surface of the fifth tarsomere of females bear two parallel rows of up to eight sensilla, each loosely aligned with two parallel rows of five spines. Salts, sugars, and amino acids elicited phasi-tonic multicellular neuronal responses of variable magnitude and form. Two pairs of sensilla are closely apposed to the most distal spine in each row; the sensory neurones associated with these sensilla exhibited notably larger responses to alanine and serine compared with those of all other sensilla. The arrangement of the taste sensilla in close proximity to prominent tarsal spines is unique and could represent an adaptation that enables them to penetrate the wax layer and be brought into contact with primary metabolites present closer to the leaf surface.  相似文献   
83.
1. A tritrophic perspective is fundamental for understanding the drivers of insect–plant interactions. While host plant traits can directly affect insect herbivore performance by either inhibiting or altering the nutritional benefits of consumption, they can also have an indirect effect on herbivores by influencing rates of predation or parasitism. 2. Enhancing soil nutrients available to trees of the genus Eucalyptus consistently modifies plant traits, typically improving the nutritional quality of the foliage for insect herbivores. We hypothesised that resulting increases in volatile essential oils could have an indirect negative effect on eucalypt‐feeding herbivores by providing their natural enemies with stronger host/prey location cues. 3. Eucalyptus tereticornis Smith seedlings were grown under low‐ and high‐nutrient conditions and the consequences for the release of volatile cues from damaged plants were examined. The influence of 1,8‐cineole (the major volatile terpene in many Eucalyptus species) on rates of predation on model caterpillars in the field was then examined. 4. It was found that the emission of cineole increased significantly after damage (artificial or herbivore), but continued only when damage was sustained by herbivore feeding. Importantly, more cineole was emitted from high‐ than low‐nutrient seedlings given an equivalent amount of damage. In the field, predation was significantly greater on model caterpillars baited with cineole than on unbaited models. 5. These findings are consistent with the hypothesis that any performance benefits insect herbivores derive from feeding on high‐nutrient eucalypt foliage could be at least partially offset by an increased risk of predation or parasitism via increased emission of attractive volatiles.  相似文献   
84.

Aim

We studied the novel weapons hypothesis in the context of the broadly distributed tree species Eucalyptus globulus. We evaluated the hypothesis that this Australian species would produce stronger inhibitory effects on species from its non‐native range than on species from its native range.

Location

We worked in four countries where this species is exotic (U.S.A., Chile, India, Portugal) and one country where it is native (Australia).

Time period

2009–2012.

Major taxa studied

Plants.

Methods

We compared species composition, richness and height of plant communities in 20 paired plots underneath E. globulus individuals and open areas in two sites within its native range and each non‐native region. We also compared effects of litter leachates of E. globulus on root growth of seedlings in species from Australia, Chile, the U.S.A. and India.

Results

In all sites and countries, the plant community under E. globulus canopies had lower species richness than did the plant community in open areas. However, the reduction was much greater in the non‐native ranges: species richness declined by an average of 51% in the eight non‐native sites versus 8% in the two native Australian sites. The root growth of 15 out of 21 species from the non‐native range were highly suppressed by E. globulus litter leachates, whereas the effect of litter leachate varied from facilitation to suppression for six species native to Australia. The mean reduction in root growth for Australian plants was significantly lower than for plants from the U.S.A., Chile and India.

Main conclusions

Our results show biogeographical differences in the impact of an exotic species on understorey plant communities. Consistent with the novel weapons hypothesis, our findings suggest that different adaptations of species from the native and non‐native ranges to biochemical compounds produced by an exotic species may play a role in these biogeographical differences.  相似文献   
85.
Elevated atmospheric CO2 concentration (eCa) might reduce forest water‐use, due to decreased transpiration, following partial stomatal closure, thus enhancing water‐use efficiency and productivity at low water availability. If evapotranspiration (Et) is reduced, it may subsequently increase soil water storage (ΔS) or surface runoff (R) and drainage (Dg), although these could be offset or even reversed by changes in vegetation structure, mainly increased leaf area index (L). To understand the effect of eCa in a water‐limited ecosystem, we tested whether 2 years of eCa (~40% increase) affected the hydrological partitioning in a mature water‐limited Eucalyptus woodland exposed to Free‐Air CO2 Enrichment (FACE). This timeframe allowed us to evaluate whether physiological effects of eCa reduced stand water‐use irrespective of L, which was unaffected by eCa in this timeframe. We hypothesized that eCa would reduce tree‐canopy transpiration (Etree), but excess water from reduced Etree would be lost via increased soil evaporation and understory transpiration (Efloor) with no increase in ΔS, R or Dg. We computed Et, ΔS, R and Dg from measurements of sapflow velocity, L, soil water content (θ), understory micrometeorology, throughfall and stemflow. We found that eCa did not affect Etree, Efloor, ΔS or θ at any depth (to 4.5 m) over the experimental period. We closed the water balance for dry seasons with no differences in the partitioning to R and Dg between Ca levels. Soil temperature and θ were the main drivers of Efloor while vapour pressure deficit‐controlled Etree, though eCa did not significantly affect any of these relationships. Our results suggest that in the short‐term, eCa does not significantly affect ecosystem water‐use at this site. We conclude that water‐savings under eCa mediated by either direct effects on plant transpiration or by indirect effects via changes in L or soil moisture availability are unlikely in water‐limited mature eucalypt woodlands.  相似文献   
86.
 Within the context of the reciprocal recurrent selection scheme developed in 1989 by CIRAD-Forêt on Eucalyptus, RAPD essays were performed to assess the genetic diversity in the two species E. urophylla and E. grandis. The molecular markers were split into two parts: the specific markers (present with different frequencies in the two species) and the common markers (present with similar frequencies in the two species). The study analyses the structure of genetic diversity within and between the two species of Eucalyptus. Different genetic distances are worked out for use in prediction equations of the individual tree trunk volume of hybrids at 38 months. Each distance is expressed as the sum of the general genetic distance and the specific genetic distance. The general genetic distance based on the double presence plus the double absence of bands seems to be an interesting co-variate to use in a factor regression model. Through this model the distance calculated between species explains the general combining ability (GCA) and the specific combining ability (SCA) of the phenotypic character with a global coefficient of determination of 81.6%. Received: 3 November 1996/Accepted: 8 November 1996  相似文献   
87.
Eucalyptus breeding is typically conducted by selection in open-pollinated progenies. As mating is controlled only on the female side of the cross, knowledge of outcrossing versus selfing rates is essential for maintaining adequate levels of genetic variability for continuous gains. Outcrossing rate in an open-pollinated breeding population of Eucalyptus urophylla was estimated by two PCR-based dominant marker technologies, RAPD and AFLP, using 11 open-pollinated progeny arrays of 24 individuals. Estimated outcrossing rates indicate predominant outcrossing and suggest maintenance of adequate genetic variability within families. The multilcous outcrossing rate (tm) estimated from RAPD markers (0.93±0.027), although in the same range, was higher (α>0.01) than the estimate based on AFLP (0.89±0.033). Both estimates were of similar magnitude to those estimated for natural populations using isozymes. The estimated Wright’s fixation index was lower than expected based on tm possibly resulting from selection against selfed seedlings when sampling plants for the study. An empirical analysis suggests that 18 is the minimum number of dominant marker loci necessary to achieve robust estimates of tm. This study demonstrates the usefulness of dominant markers, both RAPD and AFLP, for estimating the outcrossing rate in breeding and natural populations of forest trees. We anticipate an increasing use of such PCR-based technologies in mating-system studies, in view of their high throughput and universality of the reagents, particularly for species where isozyme systems have not yet been optimized. Received: 25 March 1997 / Accepted: 13 May 1997  相似文献   
88.
Kyozuka  Junko  Harcourt  R.  Peacock  W.J.  Dennis  E.S. 《Plant molecular biology》1997,35(5):573-584
Two Eucalyptus homologues of the Arabidopsis floral homeotic gene AP1 (EAP1 and EAP2/) show 60–65% homology to AP1. EAP1 and EAP2 are expressed predominantly in flower buds. EAP2 produces two different polypeptides arising from differential splicing at an intron, the shorter EAP2 protein diverging from the longer sequence after amino acid 197 and having a translation stop after residue 206. This truncated protein includes both MADS- and K-box amino acid sequences. Ectopic expression of the EAP1 or either of the two EAP2 polypeptides in Arabidopsis driven by the 35S promoter produces effects similar to the corresponding AP1 construct, causing plants to flower earlier, have shorter bolts and resemble the terminal flower mutant (tfl).  相似文献   
89.
Summary Micropropagation has the potential to quickly introduce selected genotypes of adult Eucalyptus globulus clones and it is now widely used in Portugal as a part of genetic improvement programs. Several clones have been established and multiplied in vitro. The different clones have individual requirements for successful rooting. Rejuvenation was achieved at different periods after culture initiation for the different clones. Subculturing preceding rooting in multiplication medium supplemented with riboflavin and cholene chloride allowed the increase of rooting ability for several clones tested. Removal of boron from the rooting medium increased rooting by 10%. Indolebutyric acid (IBA) dipping before transfer to the rooting medium resulted in a rooting percentage of 80–95% for the best clones tested. Acclimatization was performed without difficulties (90–95% success) and the rooted plants were either planted directly or used as mother plants for further cutting production, depending on the needs. The results described in this paper increase the commercial feasibility of the micropropagation system for E. globulus.  相似文献   
90.
Abstract The soil seed bank and its relation to the extant vegetation in a Eucalyptus regnans F. Muell. forest in the Central Highlands of Victoria were examined. The average seed density was 430 germinable seeds m?2 to a depth of 2 cm. There was a polynomial regression relationship between the density and species richness of seeds in soil and forest age (0. 6–54 years). Species richness was not significantly different among soil depths (0- 2 , 2- 5 , 5–10 and 10–20 cm) in the forest stand of 54 years old. More seeds germinated from the 5–10 cm depth than from the other depths. Forbs accounted for 73% of the total germinable seeds and there was no germination of E. regnans. The number of species, particularly woody plant species, germinating from the soil seed bank were significantly lower than in the extant vegetation. However, almost all species present in the soil seed bank were present in the vegetation. The soil seed bank provides an important source for the rapid regeneration of understorey vegetation following clear-cutting and slash-burning in the E. regnans forest. The rapid understorey establishment may play an important role in protecting soil from erosion, in nutrient conservation, replacement and redistribution. The soil seed bank may also be a necessary source of maintaining genetic diversity in the forest over the long term.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号