首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
  2023年   1篇
  2022年   1篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2014年   5篇
  2013年   4篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   6篇
  2008年   6篇
  2007年   4篇
  2006年   5篇
  2005年   3篇
  2004年   4篇
  2002年   5篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有68条查询结果,搜索用时 62 毫秒
11.
Osteosarcoma chemotherapy has improved survival rates, however, chemoresistance and drug toxicity still limit therapy. Drug combinations may overcome these limitations by allowing fewer chemoresistant cells to survive. The aim of this study was to evaluate the cytotoxic potential of hesperetin to osteosarcoma and to analyze the cell cycle effects of combinations of hesperetin with chemotherapeutic agents. For this, the U2OS human osteosarcoma cell line was exposed to hesperetin or hesperetin combined with etoposide or doxorubicin in defined proportions. Hesperetin was less cytotoxic compared to chemotherapeutic agents, as shown by cell growth, viability and clonogenic assays. Notwithstanding, hesperetin combined with etoposide showed additive effects on the inhibition of cell growth. Furthermore, hesperetin induced G2-phase arrest, associated with decreased gene expression of cyclins B1 and E1 and cyclin-dependent kinases 1 and 2. The combination with higher additive effect resulted in higher percentage of cells in G2-phase, showing that G2-phase arrest is associated with cytotoxicity. Moreover, hesperetin induced cytostatic effects. In conclusion, our results suggest that G2-phase arrest is an important step for hesperetin-induced cytotoxicity in U2OS cells. Hesperetin shows potential cytotoxicity when combined with etoposide, which may have implications on therapeutic developments for osteosarcoma.  相似文献   
12.
Neural stem cells (NSC) undergo apoptotic cell death during development of nervous system and in adult. However, little is known about the biochemical regulation of neuroprotection by neurotrophin in these cells. In this report, we demonstrate that Staurosporine (STS) and Etoposide (ETS) induced apoptotic cell death of NSC by a mechanism requiring Caspase 3 activation, poly (ADP-ribose) polymerase and Lamin A/C cleavage. Although C17.2 cells revealed higher mRNA level of p75 neurotrophin receptor (p75NTR) compared with TrkA or TrkB receptor, neuroprotective effect of both nerve growth factor (NGF) and brain-derived growth factor (BDNF) mediated through the activation of tropomyosin receptor kinase (Trk) receptors. Moreover, both NGF and BDNF induced the activation of the phosphatidylinositide 3 kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathway. Inhibition of Trk receptor by K252a reduced PARP cleavage as well as cell viability, whereas inhibition of p75NTR did not affect the effect of neurotrophin on neurotoxic insults. Thus our studies indicate that the protective effect of NGF and BDNF in NSC against apoptotic stimuli is mediated by the PI3K/Akt and MAPK signaling pathway via Trk receptors. An erratum to this article can be found at  相似文献   
13.
Glycogen synthase kinase-3β (GSK3β) controls the survival of osteoblasts during bone development through Wnt canonical signaling. GSK3β is a key factor for osteoblastogenesis, but relatively less is known regarding its role in osteoblast apoptosis. Genotoxic stress induced by etoposide promoted apoptotic signaling by GSK3β activation in C3H10T1/2 cells, a mouse mesenchymal cell line. Etoposide led to the time-dependent activation of GSK3β and caspase-3, which resulted in PARP cleavage. LiCl (a specific inhibitor) and siRNA (gene knock-down) of GSK3β prevented the effects of etoposide on apoptosis. Staurosporine also induced apoptosis in C3H10T1/2 cells, but LiCl could not rescue. Bcl-2 was decreased in the cells by exposure to etoposide. LiCl completely recovered Bcl-2 expression as shown by both the mRNA and the protein expression levels. In conclusion, etoposide-induced apoptosis in C3H10T1/2 cells is mediated by GSK3β, which leads to caspase-3 activation via decrease in Bcl-2 expression. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
14.
Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.  相似文献   
15.
Etoposide is a widely used anticancer drug in the treatment of different tumors. Etoposide is known to activate a wide range of intracellular signals, which may in turn induce cellular responses other than apoptosis. ADAM10 and TACE/ADAM17 belong to a family of transmembrane extracellular metalloproteinases involved in paracrine/juxtacrine regulation of many signaling pathways. The aim of this work was to evaluate if etoposide induces upregulation of ADAM10 or TACE/ADAM17 in two cell lines (GC-1 and GC-2) derived from male germ cells. Results showed that etoposide induced apoptosis in a dose-response manner in both GC-1 and GC-2 cells. Apoptosis started to increase 6 h after etoposide addition in GC-2 cells, whereas the same was observed 18 h after addition to the GC-1 cells. Protein and mRNA levels of ADAM10 and TACE/ADAM17 increased 18 h after etoposide was removed from the GC-1 cells. In GC-2 cells, the protein levels of both proteins increased 12 h after etoposide was removed. ADAM10 mRNA increased after 3 h and then steadily decreased up to 12 h after removal, whereas TACE/ADAM17 mRNA decreased after etoposide removal. Finally, apoptosis was prevented in GC-1 and GC-2 cells by the addition of pharmacological inhibitors of ADAM10 and TACE/ADAM17 to the culture medium of etoposide-treated cells. Our results show for the first time that etoposide upregulates ADAM10 and TACE/ADAM17 mRNA and protein levels. In addition, we also show that ADAM10 and TACE/ADAM17 have a role in etoposide-induced apoptosis.  相似文献   
16.
We have studied the effects of oxygen radical scavengers on the inactivation of ss ΦX174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH ≥ 7.4. A semi-quinone free radical of etoposide is thought to play a role in the inactivation of ss ΦDX174 DNA by its precursors 3',4'-ortho-quinone and 3',4'-ortho-dihydroxy-derivative. The possible role of oxygen radicals formed secondary to semi-quinone formation in the inactivation of DNA by the semi-quinone free radical was investigated using the hydroxyl radical scavengers t-butanol and DMSO. the spin trap DMPO, the enzymes catalase and superoxide dismutase, the iron chelator EDTA and potassium superoxide. Hydroxyl radicals seem not important in the process of inactivation of DNA by the semi-quinone free radical, since t-butanol, DMSO, catalase and EDTA had no inhibitory effect on DNA inactivation. The spin trapping agent DMPO strongly inhibited DNA inactivation and semi-quinone formation from the ortho-quinone of etoposide at pH ≥ 7.4 with the concomitant formation of a DMPO-OH adduct. This adduct probably did not arise from OH· trapping but from trapping of O2-. DMSO increased both the semi-quinone formation from and the DNA inactivation by the ortho-quinone of etoposide at pH ≥ 7.4. Potassium superoxide also stimulated ΦDX174 DNA inactivation by the ortho-quinone at pH ≤ 7. From the present study, it is also concluded that superoxide anion radicals probably play an important role in the formation of the semi-quinone free radical from the orthoquinone of etoposide, thus indirectly influencing DNA inactivation.  相似文献   
17.
New derivatives of phaeosphaeride A (PPA) were synthesized and characterized. Anti-tumor studies were carried out on the U937, HCT-116, PC3, MCF-7, A549, К562, NCI-H929, Jurkat, THP-1, RPMI8228 tumor cell lines, and on the HEF cell line. All the compounds synthesized were found to have better efficacy than PPA towards the tumor cell lines mentioned. Compound 6 (IC50?=?0.59?±?0.27?µM) was observed to be 11 times more active than PPA (IC50?=?6.5?±?0.30?µM) towards the NCI-H929 cell line, with a therapeutic index of 18. Compound 6 was determined to be over half and 16 times more active than etoposide towards the NCI-H929 (IC50?=?0.9?±?0.05?µM) and A549 (IC50?=?100?±?7.0?µM) cell lines, respectively.  相似文献   
18.
A new series of amide derivatives of 4β-Acetamidobenzofuranone-podophyllotoxin hybrids (14ag) were synthesized and their chemical structures were confirmed by 1H, 13C NMR and mass spectral data. Further, all the synthesized Acetamidobenzofuranone-podophyllotoxin hybrids were evaluated for in vitro cytotoxic activity against a panel of four human cancer cell lines i.e., human breast (MCF-7, MDA MB-231), lung (A549), and prostrate (DU-145). Among benzofuranone-podophyllotoxin hybrid compounds, 14b and 14e were exhibited more potent activity than standard drug and 14c and 14f were showed anticancer activity equivalent to etoposide.  相似文献   
19.
Etoposide is a chemotherapeutic agent that induces cell death by blocking topoisomerase II catalytic function. Although etoposide is effective in the treatment of cancer, it also causes the death of normal proliferating cells, including male germ cells. Administration of etoposide during the prepubertal phase causes diturbances in several testicular morphometric parameters and in Sertoli cells. Cytoprotection of the seminiferous epithelium is the only means of preserving potential male reproduction in prepubertal cancer patients. Carnitine, an amino acid naturally present in normal cells, is a promising cryoprotectant as it is concentrated in the epididymis and promotes sperm maturation. We have therefore investigated whether carnitine protects rat testes against etoposide and, thus, improves fertility in adulthood. Our results suggest that carnitine partially protects the testis against damage caused by etoposide, although the mechanism by which it happens remains unknown. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
20.
Summary The selective targeting of tumours by enzymes conjugated to monoclonal antibodies (mAb) may be an ideal approach to convert relatively nontoxic prodrugs into active agents at the tumour site. We used the anti-carcinoembryonic antigen mAb BW431/26 conjugated to alkaline phosphatase (AP) and phosphorylated etoposide (etoposide-P) as a prodrug to study the feasibility of this concept. Etoposide was phosphorylated with POCl3. Quantitative hydrolysis of etoposide-P to etoposide occurred within 10 min in the presence of AP. BW431/26 and AP were conjugated using a thioether bond. The AP conjugate retained 93% of its calculated activity.125I-labelled AP conjugate did not show a reduction of immunoreactivity as determined by a cell-binding assay. SW1398 colon cancer cells were used to analyse the cytotoxicity of etoposide and etoposide-P. Etoposide (IC50 22 µM) was 100 times more toxic than etoposide-P (20% growth inhibition at 200 µM). Pretreatment of the cells with BW431/26-AP prior to etoposide-P exposure resulted in a dramatic increase in cytotoxicity (IC50 70 µM). The pharmacokinetics and tumour-localizing properties of BW431/27 and the AP conjugate were assessed in nude mice bearing SW1398 tumours. BW431/26 showed excellent tumour localization (10% of the injected dose/g tissue retained from 8 h to 120 h), whereas the AP conjugate showed a reduced tumour uptake (3%-0.3% of the injected dose/g tissue at 8–120 h), a faster clearance from the circulation and a high liver uptake. Radiolabelled AP showed a similar pharmacokinetic profile to the AP conjugate. Gel filtration analysis of blood, liver, and tumour samples indicated good stability of the conjugate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号