首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   11篇
  国内免费   5篇
  331篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   2篇
  2018年   4篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   6篇
  2013年   13篇
  2012年   5篇
  2011年   5篇
  2010年   3篇
  2009年   15篇
  2008年   14篇
  2007年   16篇
  2006年   11篇
  2005年   19篇
  2004年   12篇
  2003年   11篇
  2002年   15篇
  2001年   17篇
  2000年   7篇
  1999年   3篇
  1998年   4篇
  1997年   8篇
  1996年   10篇
  1995年   10篇
  1994年   16篇
  1993年   6篇
  1992年   6篇
  1991年   3篇
  1990年   7篇
  1989年   7篇
  1988年   25篇
  1987年   1篇
  1986年   4篇
  1985年   4篇
  1983年   1篇
  1982年   6篇
  1980年   1篇
  1978年   1篇
排序方式: 共有331条查询结果,搜索用时 0 毫秒
101.
Incorporation of strontium into otoliths of an estuarine fish   总被引:1,自引:0,他引:1  
Patterns of Sr/Ca variability in fish otoliths have been widely applied as tracers of movement between freshwater and marine habitats, with the assumption that low salinity habitats correspond to lower otolith levels of Sr/Ca. On the other hand, fluvial estuaries can contain steep gradients in Sr/Ca, and in some estuaries, freshwater values of Sr/Ca can exceed marine values, which are relatively constant across marine habitats. Therefore, to interpret Sr/Ca variability in otoliths of fish that move through estuaries, information is needed about both the incorporation of strontium into otoliths and the nature of the gradient of Sr/Ca in the water. We conducted four experiments to evaluate the incorporation of strontium into fish otoliths under estuarine conditions, using white perch (Morone americana) as a model estuarine fish. One laboratory and the two field experiments tested the relationship between Sr/Ca in the otolith and that in the water. A fourth experiment investigated the effect of salinity, independently of the water chemistry (Sr was manipulated while maintaining a constant salinity and Ca level). All four experiments supported a direct relationship between Sr/Ca in the otolith and the water, across a range of estuarine salinities. Results also indicated that the incorporation of strontium into otoliths of estuarine fishes should be constant across broad gradients of Sr/Ca in estuarine waters. While the experiments supported past applications of tracing estuarine and diadromous movements with otolith Sr/Ca chronologies, we emphasize the need to understand the underlying nature of Sr/Ca gradients in estuaries, which may limit or confound reconstructions of estuarine habitat use.  相似文献   
102.
During the wet season of 1999–2000, we studied the effects of the hydroperiod and other physical and chemical variables on planktonic copepod communities from six stations in Everglades National Park. Two stations were located in a slough (Taylor Slough 1, Taylor Slough 2) and four stations in the marl prairies of the Rocky Glades (Long Pine Key 7, Long Pine Key 8, Pa-hay-okee, Chekika). During the period of investigation, Taylor Slough sites had the longest hydroperiods, together with Pa-hay-okee, which is located near the eastern edge of Shark River Slough. Long Pine Key 7 and Long Pine Key 8 had the shortest hydroperiods, and Chekika had an intermediate hydroperiod. The pineland edge sites in the southern Rocky Glades (Long Pine Key) had higher numbers of individuals, and high percentages of larval stages, especially at the end of the wet season. The pineland ecotone is morphologically very heterogeneous, with solution holes in the limestone bedrock that provide below-ground refugia when there is no water on the marsh surface. The slough stations had the lowest numbers of individuals, as well as Chekika in the Rocky Glades, probably as a consequence of the altered water quality and hydropatterns caused by water management structures and operations We collected two species of calanoids, 18 cyclopoids, and three harpacticoids. The most abundant species were Acanthocyclops robustus, Tropocyclops prasinus mexicanus, Arctodiaptomus floridanus, Mesocyclops americanus, Macrocyclops albidus, Osphranticum labronectum, Microcyclops varicans, Microcyclops rubellus, Eucyclops conrowae, and Mesocyclops edax. Of these species, T. prasinus mexicanus and A. floridanus seemed to be adapted to short-hydroperiod habitats, M. rubellus and M. varicans to longer hydroperiod habitats, and E. conrowae to high conductivity habitats. Acanthocyclops robustus, M. albidus, and O. labronectum were dominant regardless of hydroperiod. As regards the temporal distribution, A. robustus was abundant throughout the entire wet season, M. edax, M. rubellus, M. americanus and M. varicans were most abundant in mid-wet season, in September–October, and T. prasinus mexicanus, M. albidus, and E. conrowae were abundant late in the wet season, in winter. The two calanoids only slightly overlapped in time: A. floridanus was abundant at the beginning of the wet season, in July–August, and O. labronectum was abundant at the end of the wet season, in December.  相似文献   
103.
Macrobenthic invertebrates are an important food source for higher trophic levels in freshwater and marine habitats, yet the importance of predation impacting regular seasonal changes in macrobenthos abundance remains unclear. Benthic invertebrates and transient marine species in temperate estuaries display inverse patterns of seasonal abundance, suggesting a link between predation and summer macrobenthos abundance minima. We conducted manipulative caging experiments to test the importance of predation by white shrimp (Litopenaeus setiferus) in regulating estuarine subtidal macrobenthos densities. We predicted greater declines in macrobenthos densities with increased shrimp densities due to predation rather than disturbance and macrobenthos emigration. Using these field and laboratory data, we estimate whether white shrimp predation can significantly contribute to the macrobenthos seasonal abundance minima observed in long-term monitoring data.White shrimp predation was measured in the field using 7-d predator enclosure/exclusion experiments. Within the uppermost 0-2 cm of sediment, total macrobenthos densities decreased within shrimp enclosure cages using 12 or 36 shrimp m− 2. Laboratory experiments distinguished between the effects of shrimp predation versus shrimp disturbance and macrobenthos emigration. Shrimp predation significantly reduced macrobenthos densities, while effects of shrimp disturbance and macrobenthos emigration were not significant in these experiments. Despite the impacts from other ambient predators and other abiotic factors, white shrimp were clearly capable of driving subtidal macrobenthos from their annual maximum density in winter/spring to their summertime minimum density.  相似文献   
104.
Assessing ecosystem health is an ongoing priority for governments, scientists and managers worldwide. There are several decades of scientific literature discussing ecosystem health and approaches to assess it, with applications to aquatic and terrestrial environments incorporating economic, environmental and social processes. We conducted a systematic review of studies that assess ecosystem health to update our current understanding of how ecosystem health is being defined, and provide new ideas and directions on how it can be measured. We focused the review on studies that used the term ‘ecosystem health’ or the equivalent terms ‘ecosystem integrity’, ‘ecosystem quality’ and ‘ecosystem protection’, in lotic freshwater and estuarine environments, and examined how many of these included explicit definitions of what ecosystem health means for their study system. We collected information about the temporal and geographical distribution of studies, and the types of indicators (biological, physical or chemical) used in the assessments. We found few studies clearly defined ecosystem health and justified the choice of indicators. Given the broad use of the term it seems impractical to have an overarching definition of ecosystem health, but rather an approach that is able to define and measure health on a case by case basis. A combination of biological, physical and chemical indicators was commonly used to assess ecosystem health in both estuarine and freshwater studies, with a strong bias towards fish and macroinvertebrate community metrics (e.g. diversity, abundance and composition). We found only two studies that simultaneously considered both freshwater and estuarine sections of the ecosystem, highlighting the significant knowledge gap in our understanding of the transfer of flow, nutrients and biota between the different systems—all key factors that influence ecosystem health. This review is the first to combine knowledge from both freshwater and estuarine ecosystem assessments and critically review how aquatic ecosystem health is defined and measured since the late-1990s, providing the basis for setting achievable management goals relating to ecosystem health into the future.  相似文献   
105.
1. With increases in river discharge over time and space, zooplankton generally encounter increased turbulence, turbidity, hydraulic forces, downstream advection and food limitations, all of which should affect species diversity and densities. Of these factors, the role of turbulence on the distribution of zooplankton is least known along longitudinal and lateral dimensions in river networks. 2. We tested the factorial effects of turbulence and grazing level on Ohio River potamoplankton in spring and summer using twelve 1600‐L, outdoor mesocosms. Turbulence was calculated using the Froude number for equal depths but with current velocities of 0.064 and 0.32 m s?1. Grazing levels corresponded to a high density treatment (=ambient river densities of rotifers, copepods and cladocerans) and a low density treatment (initially no zooplankton >64 μm). All tanks had the same water residence time, and hydraulic stress was minimized by circular flow patterns. 3. Zooplankton densities and population growth rates were significantly affected by turbulence level and season. In general, rotifer populations grew faster in high turbulence tanks (though Keratella and Brachionus populations flourished in both treatments in summer) and microcrustaceans thrived better in low turbulence environments. The larger, calanoid copepods handled more turbulent conditions much better than cyclopoids or nauplii. Zooplankton had no detectable effects on particulate organic carbon concentrations in either month (values were higher in spring), but rotifers reduced chlorophyll concentrations in both months. 4. The relative importance of turbulence in controlling potamoplankton is probably to vary not only on a longitudinal basis in river networks but also with both the hydrogeomorphic complexity of river reaches and the type and amount of river regulation. Plans for river rehabilitation and management should incorporate non‐turbulent habitats in large rivers as a means of enhancing zooplankton populations and providing an important food web component for planktivores.  相似文献   
106.
The zooplankton of three european estuaries (Ems, Gironde and Westerschelde) was investigated during spring 1992 by means of samples taken along the salinity gradient. The three estuaries are comparable in terms of total area, flushing time and salinity gradient but differ by their level of eutrophication (highest in the Westerschelde), suspended matter concentration (highest in the Gironde) and potential phytoplankton production (highest in the Ems). Copepods and meroplankton dominated the zooplankton in the three estuaries. The dominant copepod species were Eurytemora affinis and Acartia bifilosa. The distribution of E. affinis along the salinity gradient differed between the estuaries. Peaks of abundance were observed at 0 PSU in the Gironde, 6 PSU in the Ems and 9 PSU in the Westerschelde. The downstream shift of the population in the Westerschelde was likely due to anoxic conditions occurring in the oligohaline zone. In the Gironde the downstream distribution of E. affinis was limited by the very high suspended matter concentration found in the maximum turbidity zone. Whatever the estuary, the parameters of the population of E. affinis and maximum abundance values were similar. However, the influence of the better quality of the available food was suggested in the Ems where individual dry weights and egg production were higher than in the two other estuaries. The influence of a good quality of food in the Ems was confirmed by the development of a large population of Acartia bifilosa (as abundant as E. affinis) and highest values of adult individual weights.The meroplankton (essentially Polychaete and cirripede larvae) was much more developed in the Ems than in the Westerschelde and Gironde. This was likely due to the large extent of mudflats and hard substrates in the Ems favouring adult settlement and hence the number of larvae locally produced.  相似文献   
107.
Different approaches to the study of life cycle strategies of Antarctic copepods are described in an attempt to shed new light on our present knowledge. To date, most studies were carried out on abundance, horizontal and vertical distribution and stage composition during different seasons and in various regions. Hence, the seasonal pictures had to be compiled from different years and sampling regions. The physiological method includes measurements on e.g. egg production, feeding, respiration and excretion rates, C:N and O:N ratios, lipid and protein contents. However, both physiological and biochemical data are still rare. Results of field observations are given in this paper for investigations conducted within the last 15 years in the eastern Weddell Sea, while data of physiological parameters are based on a broader geographical region. In the eastern Weddell Sea, eight copepod species account for about 95% of copepod abundance and for more than 80% of copepod biomass. Within the calanoids, the small species Microcalanus pygmaeus dominates by numbers with 66%, while the large species Calanoides acutus and Calanus propinquus comprise together 52% of the biomass. Species abundance is lowest in winter and highest in summer/autumn, however, seasonal changes in the abundance of M. pygmaeus are small and this species occurs in similar quantities throughout the year. All copepod species show a distinct seasonal vertical distribution pattern and they occur in upper water layers in summer, in contrast to the other seasons. However, the depth layers of maximum concentration differ between species. The ontogenetic vertical migration is most pronounced in C. acutus and relatively weak in C. propinquus. The age structure also shows seasonal differences with the youngest population observed in summer for C. acutus, C. propinquus, Ctenocalanus citer or autumn for Metridia gerlachei, whereas the M. pygmaeus population is oldest during summer. The youngest copepodite stage and the males are not always present in C. acutus and C. propinquus. In contrast, all developmental stages and both sexes occur throughout the year in M. gerlachei, M. pygmaeus and C. citer. Gonad maturation in the dominant calanoid species proceeds well before the onset of phytoplankton production in the eastern Weddell Sea. However, the highest portion of females with ripe gonads and hence highest egg production rates coincide with the productive period in spring and summer. In autumn, ovaries of the three larger species C. acutus, C. propinquus and M. gerlacheiare all spent. In contrast, the percentage of ripe females of the two smaller species, C. citer and M. pygmaeus, stays high in autumn. Egg production rates are highly variable within one region and species. Many copepods accumulate large depots of lipid, mainly wax esters. In contrast, five species (C. propinquus, C. simillimus, Euchirella rostromagna, Stephos longipes and Paralabidocera antarctica) almost exclusively synthesise triacylglycerols and not wax esters. The lipid content exhibits distinct seasonal patterns, and is highest in autumn. A seasonal difference is also obvious in metabolic activities with lowest rates during the dark season. The adaptation to the pronounced seasonality in the Southern Ocean differs greatly between copepod species, and most Antarctic copepods stay active during the dark season. Calanoides acutus seems to be the only true diapause species. Calculations of summer developmental rates and winter mortality rates of the large species C. acutus and C. propinquus suggest that both species have a 1-year life cycle with few females overwintering and probably spawning a second time. In contrast, a 2-year life cycle is more likely in R. gigas. However, life cycle durations of all species studied are still uncertain and regional differences are very probable.  相似文献   
108.
 Both growth and migratory history of the Pacific Ocean forms of the threespine stickleback Gasterosteus aculeatus collected in Otsuchi Bay, northeastern Japan, were examined using otolith microstructure and analysis of strontium (Sr) and calcium (Ca) concentrations with wavelength dispersive X-ray spectrometry by an electron microprobe. Age of the juveniles (21.6–25.9 mm in total length) examined ranged from 101 to 128 days (115 ± 8.5 days; mean ± SD), hatching being estimated as having occurred between March and April 2001. The Sr : Ca ratios in the otoliths changed with both ontogenic development and salinity of the habitat. The otolith Sr : Ca ratios increased gradually from 4.1 × 10−3 around the core to 7.5 × 10−3 around the edge of the otolith. The fluctuation pattern of otolith Sr : Ca ratios was different from those observed in both freshwater resident and anadromous forms in previous studies. These results suggested that the fish sampled spend their lives in the estuarine and sea environment without freshwater life after hatching. Received: June 5, 2002 / Revised: September 11, 2002 / Accepted: September 24, 2002 Acknowledgments We thank Mr. K. Morita and crews of the Otsuchi Marine Research Center, Ocean Research Institute, The University of Tokyo for their assistance in collecting specimens. This work was supported in part by Grant-in-Aid No. 13760138 from the Ministry of Education, Culture, Sports, Science and Technology, Japan. Correspondence to:Takaomi Arai  相似文献   
109.
The objective of this study was to understand the main factors controlling salt marsh plant species structure and dynamics. So, we determined plant cover and composition across a permanent transect, 450 m long and 1 m wide, defined in 1951 in Corroios salt marsh, in the Tagus estuary (Portugal) and we characterized the physicochemical variables every 50 m along this transect. Based on those results we discuss the dynamic and evolution of salt marsh vegetation during the last 50 years comparing former and recent data. The results showed that differences in salinity and flooding were determinant factors in plant species composition and distribution along the studied transect. In addition, long-term variations of these factors as a consequence of vertical accretion and sea level rise seem to be responsible for the evolution in plant structure and vegetation zonation patterns, during the last 50 years in the Tagus estuary salt marshes.  相似文献   
110.
In 2002, the neritic copepod Acartia tumida was present in the plankton of Kievka Bay from February through July at a temperature of ?1.2 to 14°C with an average population density of 6812 ind/m3 and a biomass of 532.75 mg/m3 (0.12–65.33 and 2.2–87.84% of total copepod density and biomass, respectively). The maximum population density of A. tumida (45 600 ind/m3) was recorded in the first ten-day period of April at a temperature of 2.2–3.8°C. Seasonal variations in the age and sex structure of A. tumida population were found. From February to July, A. tumida produced two generations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号