首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   827篇
  免费   77篇
  国内免费   55篇
  2023年   15篇
  2022年   26篇
  2021年   22篇
  2020年   27篇
  2019年   25篇
  2018年   30篇
  2017年   38篇
  2016年   23篇
  2015年   30篇
  2014年   51篇
  2013年   63篇
  2012年   25篇
  2011年   49篇
  2010年   37篇
  2009年   35篇
  2008年   51篇
  2007年   41篇
  2006年   37篇
  2005年   32篇
  2004年   27篇
  2003年   33篇
  2002年   26篇
  2001年   19篇
  2000年   17篇
  1999年   16篇
  1998年   8篇
  1997年   11篇
  1996年   14篇
  1995年   13篇
  1994年   14篇
  1993年   13篇
  1992年   11篇
  1991年   12篇
  1990年   9篇
  1989年   4篇
  1988年   5篇
  1987年   4篇
  1986年   7篇
  1985年   5篇
  1984年   7篇
  1983年   3篇
  1982年   9篇
  1981年   4篇
  1980年   5篇
  1979年   3篇
  1975年   1篇
  1973年   2篇
排序方式: 共有959条查询结果,搜索用时 15 毫秒
61.
Unstable and mechanically demanding habitats like wind-exposed open fields or the wave-swept intertidal require rapid adaptive processes to ensure survival. The mechanism of passive reconfiguration was analyzed in two plant models exposed to irregular flow of water or air, two species of the brown seaweed Durvillaea and the giant reed Arundo donax. Irrespective of the surrounding media and the subsequent Reynolds numbers (Re ~ 105 - 107), reconfiguration seems to be the key strategy for streamlining to avoid overcritical drag-induced loads. This passive mechanism is also discussed in the context of the requirement of a maximized surface area for light interception, so that morphological adaptations to rapid reconfiguration represent at least a bifactorial optimization. Both tested plant models exhibited the same principles in streamlining. At a specific threshold value, the proportionality between drag forces and flow velocity can be reduced from the second power close to an almost linear relation. This empirically derived relation could be characterized by a figure of merit or Vogel number (B). A value close to B = -1, resulting in a linear increase of drag force with velocity, was found at higher velocities for both the seaweeds and the giant reed, as well as for a variety of plants described in the literature. It is therefore concluded that the ability to reduce velocity-dependent drag force to a linear relation is a potentially important adaptation for plants to survive in unstable flow-dominated habitats.  相似文献   
62.
The speed of signal conduction is a factor determining the temporal properties of individual neurons and neuronal networks. We observed very different conduction velocities within the receptive field of fast-type On-Off transient amacrine cells in carp retina cells, which are tightly coupled to each other via gap junctions. The fastest speeds were found in the dorsal area of the receptive fields, on average five times faster than those detected within the ventral area. The asymmetry was similar in the On- and Off-part of the responses, thus being independent of the pathway, pointing to the existence of a functional mechanism within the recorded cells themselves. Nonetheless, the spatial decay of the graded-voltage photoresponse within the receptive field was found to be symmetrical, with the amplitude center of the receptive field being displaced to the faster side from the minimum-latency location. A sample of the orientation of varicosity-laden polyaxons in neurobiotin-injected cells supported the model, revealing that approximately 75% of these processes were directed dorsally from the origin cells. Based on these results, we modeled the velocity asymmetry and the displacement of amplitude center by adding a contribution of an asymmetric polyaxonal inhibition to the network. Due to the asymmetry in the conduction velocity, the time delay of a light response is proposed to depend on the origin of the photostimulus movement, a potentially important mechanism underlying direction selectivity within the inner retina.  相似文献   
63.
This study examines the influence of current velocity in the toxiceffect of copper in diatom-dominated biofilms grown in artificial channels.Effects on community structure, algal biomass and photosynthesis (carbonincorporation) caused by 15 g L–1 of copperwere tested at contrasting (1 and 15 cm s–1)velocities. Moreover, a possible threshold on the effect of copper on algalbiomass and photosynthesis related to current velocity was examined by usingprogressively increasing current velocity (1 to 50 cms–1) at 15 g L–1 Cu.Chlorophyll-a decreased ca. 50% as a result of addition of15 g L–1 Cu. Chlorophyll decrease occurredearlier at 15 cm s–1 than at 1 cms–1 when adding 15 g L–1Cu. Copper also caused a remarkable decrease in carbon incorporation(from 30 to ca. 50%), which was produced earlier at 15 cms–1 (three days) than at 1 cms–1 (seven days). Some taxa were affected by thecombination of copper and current velocity. Both Achnanthesminutissima and Stigeoclonium tenue becomedominant at 15 cm s–1 in the presence of copper.Significant inhibition of algal growth in 15 g L–1Cu occurred at low (1 cm s–1) and highvelocities (50 cm s–1), but not at intermediatevelocity (20 cm s–1). The experiments indicatethat current velocity triggers the effect that copper has on diatom-dominatedbiofilms, and that the effect is more remarkable at low and high than atintermediate current velocities.  相似文献   
64.
The COOH-terminal tail of mammalian neurofilament heavy subunit (NF-H), the largest neurofilament subunit, contains 44-51 lysine-serine-proline repeats that are nearly stoichiometrically phosphorylated after assembly into neurofilaments in axons. Phosphorylation of these repeats has been implicated in promotion of radial growth of axons, control of nearest neighbor distances between neurofilaments or from neurofilaments to other structural components in axons, and as a determinant of slow axonal transport. These roles have now been tested through analysis of mice in which the NF-H gene was replaced by one deleted in the NF-H tail. Loss of the NF-H tail and all of its phosphorylation sites does not affect the number of neurofilaments, alter the ratios of the three neurofilament subunits, or affect the number of microtubules in axons. Additionally, it does not reduce interfilament spacing of most neurofilaments, the speed of action potential propagation, or mature cross-sectional areas of large motor or sensory axons, although its absence slows the speed of acquisition of normal diameters. Most surprisingly, at least in optic nerve axons, loss of the NF-H tail does not affect the rate of transport of neurofilament subunits.  相似文献   
65.
Experimental and theoretical works were performed for the separation of large polyelectrolyte, such as DNA, in a column packed with gel particles under the influence of an electric field. Since DNA quickly orient in the field direction through the pores, this paper presents how intraparticle convection affects the residence time distribution of DNAs in the column. The concept is further illustrated with examples from solid-liquid systems, for example, from chromatography showing how the column efficiency is improved by the use of an electric field. Dimensionless transient mass balance equations were derived, taking into consideration both diffusion and electrophoretic convection. The separation criteria are theoretically studied using two different Peclet numbers in the fluid and solid phases. These criteria were experimentally verified using two different DNAs via electrophoretic mobility measurements, which showed how the separation position of the DNAs varies in the column in relation to the Peg/Pef values of an individual DNA. The residence time distribution was solved by an operator theory and the characteristic method to yield the column response.  相似文献   
66.
The beneficial effects of magnesium supplementation in pathological situations is well known, but the myocardial response to a nominal decrease in the level of magnesium has received relatively little attention. Hypomagnesemia can occur as chronic or acute manifestation of physiological changes, pathological conditions, or pharmacological interventions. Experimental interest was focused on the mechanical changes in adult rat heart myocytes following variation in extracellular Mg2+. Isolated cells were exposed to different levels of extracellular Mg2+ and the amplitude and rate of contraction were measured as a function of change in cell length using a video-based edge-detection system. Investigations have revealed that variation in the level of Mg2+ within physiological limits leads to mechanical changes. A decrease in the level of extracellular Mg2+ was accompanied by a significant increase in contractile amplitude and decrease in the velocities of contraction and relaxation. The contractile amplitude measured as percentage shortening were 3.08 ± 0.19%, 4.62 ± 0.19% and 6.9 ± 0.40%, respectively, on exposure to 1.8, 0.8, and 0.48 mM Mg, and the corresponding velocities of contraction and relaxation normalized to amplitude were 0.54 ± 0.02, 0.40 ± 0.03, 0.31 ± 0.03 and 0.47 ± 0.02, 0.35 ± 0.02, 0.24 ± 0.02. The variations in contractile parameters associated with the change in the level of Mg were statistically significant (p < 0.01). Variation in the contractile properties associated with change in extracellular Mg2+ may be effected by alteration in Ca2+ transients.  相似文献   
67.
Different immobilised cells models, including very simple ones, can be useful in the fitting of experimental results. However, goodness or the ability to extrapolate results needs to be in accordance with basic observations and these will also suggest models to be proposed. In this paper, observations of calcium alginate/bacteria systems are used to show the ability of basic models to fit classic observations, as well as how new observations, in this case from electronic microscopy, oblige us to think about more complex mechanisms and mathematical treatments. Nevertheless it is not only important to discuss the model type, but also the type of kinetics assumed in the interior of the beads, as well as the internal structure, the boundary conditions related to bead shredding and cell escape and finally, geometrical effects.  相似文献   
68.
Abstract.  1. The calling behaviour of virgin oviparae of the potato aphid Macrosiphum euphorbiae (Thomas) (Homoptera: Aphididae) was studied at three different constant temperatures under laboratory conditions. The mean age of calling for the first time decreased with a decrease in temperature from 2.9 days at 20 °C to 2.1 days at 10 °C. At all temperature regimes, the mean onset time of calling advanced from about 5 to 3 h after the onset of the photophase, and the mean time spent calling increased by > 4 h over the 8 days.
2. Cohorts of oviparae were also observed at two different periods in late summer–early autumn in the field, to examine the effects of fluctuating abiotic conditions (temperatures, wind velocity, rain) and age on calling behaviour. As under constant laboratory conditions, the mean age of calling for the first time declined with declining temperature, from 3.7 days in early September to 1.6 days at the end of September. Age-related changes in the mean onset time of calling and the mean time spent calling were much less evident under field conditions, due to the inhibitory effects of low temperatures, high winds, and rain on female calling activity.
3. The results are discussed within the context of reproductive success and address a previously proposed hypothesis suggesting that species-specific calling windows may serve as a reproductive isolating mechanism for sympatric aphid species.  相似文献   
69.
70.
流速对红鳍银鲫幼鱼游泳状态的影响   总被引:7,自引:0,他引:7  
在28℃水温下,采用特制的鱼类游泳行为测定装置,研究体重(125.94±13.87)g的红鳍银鲫(Barbodes schwanenfeldi)幼鱼在0.0m/s(对照组)和0.1m/s、0.3m/s、0.5m/s3种流速下的游泳行为。结果表明,从0.0~0.3m/s,红鳍银鲫幼鱼平均趋流率和摆尾频率均随着流速的增加而增大,而0.5m/s组在90min内随时间延长而下降。红鳍银鲫游泳状态明显受到所处流速的影响,在静水对照组以"逆流前进"和"顺流而下"为主,两者共占总观察时间的98%以上;各流速组均以逆流静止为主,且随着流速的增大,逆流静止所占时间比例从45.8%增加至81.3%,而逆流前进所占时间比例由24.1%减至5%以下;逆流后退所占时间比例以0.1m/s组最大,为16.4%;顺流而下的比例随着流速增大先减小后增大,3个流速组依次为13.7%、2.1%和10.9%。红鳍银鲫幼鱼的游泳速度(V)和摆尾频率(TBF)在逆流前进及逆流静止两种游泳状态下呈线性正相关,而在逆流后退和顺流而下两种状态下两者没有显著相关。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号