首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1294篇
  免费   62篇
  国内免费   88篇
  2023年   32篇
  2022年   63篇
  2021年   63篇
  2020年   42篇
  2019年   48篇
  2018年   40篇
  2017年   30篇
  2016年   27篇
  2015年   31篇
  2014年   72篇
  2013年   94篇
  2012年   33篇
  2011年   37篇
  2010年   38篇
  2009年   47篇
  2008年   57篇
  2007年   39篇
  2006年   39篇
  2005年   31篇
  2004年   26篇
  2003年   34篇
  2002年   36篇
  2001年   14篇
  2000年   20篇
  1999年   11篇
  1998年   12篇
  1997年   6篇
  1996年   9篇
  1995年   11篇
  1994年   26篇
  1993年   26篇
  1992年   14篇
  1991年   9篇
  1990年   10篇
  1989年   6篇
  1988年   5篇
  1986年   6篇
  1985年   16篇
  1984年   33篇
  1983年   41篇
  1982年   45篇
  1981年   39篇
  1980年   27篇
  1979年   20篇
  1978年   26篇
  1977年   11篇
  1976年   14篇
  1975年   5篇
  1974年   12篇
  1973年   5篇
排序方式: 共有1444条查询结果,搜索用时 218 毫秒
71.
72.
Although the evolution and diversification of flowers is often attributed to pollinator-mediated selection, interactions between co-occurring plant species can alter patterns of selection mediated by pollinators and other agents. The extent to which both floral density and congeneric species richness affect patterns of net and pollinator-mediated selection on multiple co-occurring species in a community is unknown and is likely to depend on whether co-occurring plants experience competition or facilitation for reproduction. We conducted an observational study of selection on four species of Clarkia (Onagraceae) and tested for pollinator-mediated selection on two Clarkia species in communities differing in congeneric species richness and local floral density. When selection varied with community context, selection was generally stronger in communities with fewer species, where local conspecific floral density was higher, and where local heterospecific floral density was lower. These patterns suggest that intraspecific competition at high densities and interspecific competition at low densities may affect the evolution of floral traits. However, selection on floral traits was not pollinator mediated in Clarkia cylindrica or Clarkia xantiana, despite variation in pollinator visitation and the extent of pollen limitation across communities for C. cylindrica. As such, interactions between co-occurring species may alter patterns of selection mediated by abiotic agents of selection.  相似文献   
73.
Angelman syndrome is a neurodevelopmental disorder characterized by mental retardation, severe speech disorder, facial dysmorphism, secondary microcephaly, ataxia, seizures, and abnormal behaviors such as easily provoked laughter. It is most frequently caused by a de novo maternal deletion of chromosome 15q11–q13 (about 70–90%), but can also be caused by paternal uniparental disomy of chromosome 15q11–q13 (3–7%), an imprinting defect (2–4%) or in mutations in the ubiquitin protein ligase E3A gene UBE3A mostly leading to frame shift mutation. In addition, for patients with overlapping clinical features (Angelman-like syndrome), mutations in methyl-CpG binding protein 2 gene MECP2 and cyclin-dependent kinase-like 5 gene CDKL5 as well as a microdeletion of 2q23.1 including the methyl-CpG binding domain protein 5 gene MBD5 have been described. Here, we describe a patient who carries a de novo 5 Mb-deletion of chromosome 15q11.2–q13.1 known to be associated with Angelman syndrome and a further, maternally inherited deletion 2q21.3 (~ 364 kb) of unknown significance. In addition to classic features of Angelman syndrome, she presented with severe infections in the first year of life, a symptom that has not been described in patients with Angelman syndrome. The 15q11.2–q13.1 deletion contains genes critical for Prader–Willi syndrome, the Angelman syndrome causing genes UBE3A and ATP10A/C, and several non-imprinted genes: GABRB3 and GABRA5 (both encoding subunits of GABA A receptor), GOLGA6L2, HERC2 and OCA2 (associated with oculocutaneous albinism II). The deletion 2q21.3 includes exons of the genes RAB3GAP1 (associated with Warburg Micro syndrome) and ZRANB3 (not disease-associated). Despite the normal phenotype of the mother, the relevance of the 2q21.3 microdeletion for the phenotype of the patient cannot be excluded, and further case reports will need to address this point.  相似文献   
74.
75.
The substitution of Ser187, a residue located far from the active site of human liver peroxisomal alanine:glyoxylate aminotransferase (AGT), by Phe gives rise to a variant associated with primary hyperoxaluria type I. Unexpectedly, previous studies revealed that the recombinant form of S187F exhibits a remarkable loss of catalytic activity, an increased pyridoxal 5′‐phosphate (PLP) binding affinity and a different coenzyme binding mode compared with normal AGT. To shed light on the structural elements responsible for these defects, we solved the crystal structure of the variant to a resolution of 2.9 Å. Although the overall conformation of the variant is similar to that of normal AGT, we noticed: (i) a displacement of the PLP‐binding Lys209 and Val185, located on the re and si side of PLP, respectively, and (ii) slight conformational changes of other active site residues, in particular Trp108, the base stacking residue with the pyridine cofactor moiety. This active site perturbation results in a mispositioning of the AGT‐pyridoxamine 5′‐phosphate (PMP) complex and of the external aldimine, as predicted by molecular modeling studies. Taken together, both predicted and observed movements caused by the S187F mutation are consistent with the following functional properties of the variant: (i) a 300‐ to 500‐fold decrease in both the rate constant of L‐alanine half‐transamination and the kcat of the overall transamination, (ii) a different PMP binding mode and affinity, and (iii) a different microenvironment of the external aldimine. Proposals for the treatment of patients bearing S187F mutation are discussed on the basis of these results. Proteins 2013; 81:1457–1465. © 2013 Wiley Periodicals, Inc.  相似文献   
76.
Abstract

Molecular mechanics and molecular dynamics studies are performed to investigate the conformational preference of cell surface higher gangliosides (GT1A and GT1B) and their interaction with Cholera Toxin. The water mediated hydrogen bonding network exists between sugar residues in gangliosides. An integrated molecular modeling, molecular mechanics, and molecular dynamics calculation of cholera toxin complexed with GT1A and GT1B reveal that, the active site of cholera toxin can accommodate these higher gangliosides. Direct and water mediated hydrogen bonding interactions stabilize these binding modes and play an essential role in defining the order of specificity for different higher ganglioside towards cholera toxin. This study identifies that the binding site of cholera toxin is shallow and can accommodate a maximum of two NeuNAc residues. The NeuNAc binding site of cholera toxin may be crucial for the design of inhibitors that can prevent the infection of cholera.  相似文献   
77.
The secretory activity of the albumen gland of the freshwater snail Lymnaea stagnalis was studied morphometrically (both at the light- and at the electron-microscope level) and biochemically under the following experimental conditions: (1) glandular tissue was implanted into acceptor snails and the glandular activity of the implants was compared to that of the glands of the donors and acceptors; (2) glandular activity was measured at various periods after oviposition; and (3) the activity was measured during a 24 h cycle (diurnal activity). The results indicate that cellular release of secretion material is regulated by a nervous mechanism, whereas synthetic activity is under hormonal control.  相似文献   
78.
79.
Alcoholism has complex etiology and there is evidence for both genetic and environmental factors in its pathophysiology. Chronic, long-term alcohol abuse and alcohol dependence are associated with neuronal loss with the prefrontal cortex being particularly susceptible to neurotoxic damage. This brain region is involved in the development and persistence of alcohol addiction and neurotoxic damage is likely to exacerbate the reinforcing effects of alcohol and may hinder treatment. Understanding the mechanism of alcohol’s neurotoxic effects on the brain and the genetic risk factors associated with alcohol abuse are the focus of current research. Because of its well-established role in neurodegenerative and neuropsychological disorders, and its emerging role in the pathophysiology of addiction, here we review the genetic and epigenetic factors involved in regulating α-synuclein expression and its potential role in the pathophysiology of chronic alcohol abuse. Elucidation of the mechanisms of α-synuclein regulation may prove beneficial in understanding the role of this key synaptic protein in disease and its potential for therapeutic modulation in the treatment of substance use disorders as well as other neurodegenerative diseases.  相似文献   
80.
Bovine seminal ribonuclease (BS-RNase) acquires an interesting anti-tumor activity associated with the swapping on the N-terminal. The first direct experimental evidence on the formation of a C-terminal swapped dimer (C-dimer) obtained from the monomeric derivative of BS-RNase, although under non-native conditions, is here reported. The X-ray model of this dimer reveals a quaternary structure different from that of the C-dimer of RNase A, due to the presence of three mutations in the hinge peptide 111–116. The mutations increase the hinge peptide flexibility and decrease the stability of the C-dimer against dissociation. The biological implications of the structural data are also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号