首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202篇
  免费   23篇
  国内免费   24篇
  2024年   1篇
  2023年   4篇
  2022年   7篇
  2021年   17篇
  2020年   8篇
  2019年   11篇
  2018年   11篇
  2017年   8篇
  2016年   6篇
  2015年   6篇
  2014年   8篇
  2013年   12篇
  2012年   9篇
  2011年   9篇
  2010年   13篇
  2009年   15篇
  2008年   14篇
  2007年   10篇
  2006年   13篇
  2005年   13篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   7篇
  2000年   2篇
  1999年   7篇
  1998年   2篇
  1996年   4篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
231.
Evidence is presented for the occurrence of a second allele in the albumin system of the donkey ( Equus asinus ). Samples were collected from 127 feral donkeys in four locations within the Panamint Mountains of Death Valley National Monument, California. A common phenotype, electrophoretically characterized by a single band, was recorded from all four locations. A rare, double-band phenotype was recorded from two locations.  相似文献   
232.
Variants in the EDNRB, KIT, MITF, PAX3 and TRPM1 genes are known to cause white spotting phenotypes in horses, which can range from the common white markings up to completely white horses. In this study, we investigated these candidate genes in 169 horses with white spotting phenotypes not explained by the previously described variants. We identified a novel missense variant, PAX3:p.Pro32Arg, in Appaloosa horses with a splashed white phenotype in addition to their leopard complex spotting patterns. We also found three novel variants in the KIT gene. The splice site variant c.1346+1G>A occurred in a Swiss Warmblood horse with a pronounced depigmentation phenotype. The missense variant p.Tyr441Cys was present in several part‐bred Arabians with sabino‐like depigmentation phenotypes. Finally, we provide evidence suggesting that the common and widely distributed KIT:p.Arg682His variant has a very subtle white‐increasing effect, which is much less pronounced than the effect of the other described KIT variants. We termed the new KIT variants W18–W20 to provide a simple and unambiguous nomenclature for future genetic testing applications.  相似文献   
233.
234.
White spotting phenotypes in horses are highly valued in some breeds. They are quite variable and may range from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for white spotting phenotypes in horses. For the present study, we investigated an American Paint Horse family segregating a phenotype involving white spotting and blue eyes. Six of eight horses with the white‐spotting phenotype were deaf. We obtained whole‐genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~63‐kb deletion spanning exons 6–9 of the MITF gene (chr16:21 503 211–21 566 617). We confirmed the breakpoints of the deletion by PCR and Sanger sequencing. PCR‐based genotyping revealed that all eight available affected horses from the family carried the deletion. The finding of an MITF variant fits well with the syndromic phenotype involving both depigmentation and an increased risk for deafness and corresponds to human Waardenburg syndrome type 2A. Our findings will enable more precise genetic testing for depigmentation phenotypes in horses.  相似文献   
235.
ABSTRACT Recently, a number of papers have addressed the use of pedigrees in the study of wild populations, highlighting the value of pedigrees in conservation management. We used pedigrees to study the horses (Equus caballus) of Assateague Island National Seashore, Maryland, USA, one of a small number of free-ranging animal populations that have been the subject of long-term studies. This population grew from 28 in 1968 to 175 in 2001, causing negative impacts on the island ecosystem. To minimize these effects, an immunocontraception program was instituted, and horse numbers are slowly decreasing. However, there is concern that this program may negatively affect the genetic health of the herd. We found that although mitochondrial DNA diversity is low, nuclear diversity is comparable to that of established breeds. Using genetic data, we verified and amended maternal pedigrees that had been primarily based on behavioral data and inferred paternity using genetic data along with National Park Service records of the historic ranges of males. The resulting pedigrees enabled us to examine demography, founder contributions, rates of inbreeding and loss of diversity over recent generations, as well as the level of kinship among horses. We then evaluated the strategy of removing individuals (using nonlethal means) with the highest mean kinship values. Although the removal strategy increased the retained diversity of founders and decreased average kinship between individuals, it disproportionately impacted sizes of the youngest age classes. Our results suggest that a combined strategy of controlled breeding and immunocontraception would be more effective than removing individuals with high mean kinships in preserving the long-term health and viability of the herd.  相似文献   
236.
Observation bias pervades data collected during aerial surveys of large animals, and although some sources can be mitigated with informed planning, others must be addressed using valid sampling techniques that carefully model detection probability. Nonetheless, aerial surveys are frequently employed to count large mammals without applying such methods to account for heterogeneity in visibility of animal groups on the landscape. This often leaves managers and interest groups at odds over decisions that are not adequately informed. I analyzed detection of feral horse (Equus caballus) groups by dual independent observers from 24 fixed-wing and 16 helicopter flights using mixed-effect logistic regression models to investigate potential sources of observation bias. I accounted for observer skill, population location, and aircraft type in the model structure and analyzed the effects of group size, sun effect (position related to observer), vegetation type, topography, cloud cover, percent snow cover, and observer fatigue on detection of horse groups. The most important model-averaged effects for both fixed-wing and helicopter surveys included group size (fixed-wing: odds ratio = 0.891, 95% CI = 0.850–0.935; helicopter: odds ratio = 0.640, 95% CI = 0.587–0.698) and sun effect (fixed-wing: odds ratio = 0.632, 95% CI = 0.350–1.141; helicopter: odds ratio = 0.194, 95% CI = 0.080–0.470). Observer fatigue was also an important effect in the best model for helicopter surveys, with detection probability declining after 3 hr of survey time (odds ratio = 0.278, 95% CI = 0.144–0.537). Biases arising from sun effect and observer fatigue can be mitigated by pre-flight survey design. Other sources of bias, such as those arising from group size, topography, and vegetation can only be addressed by employing valid sampling techniques such as double sampling, mark–resight (batch-marked animals), mark–recapture (uniquely marked and identifiable animals), sightability bias correction models, and line transect distance sampling; however, some of these techniques may still only partially correct for negative observation biases. © 2011 The Wildlife Society.  相似文献   
237.
Since its domestication, about 5000 years ago, the donkey (Equus asinus) has been extensively used as a work or draft animal in agricultural activities and for the transportation of people and goods. In the last century, technology improvement and growing mechanization strongly affected agriculture and the management and use of this livestock species in the industrialized countries. Nowadays, the use of donkeys for work or transport has almost disappeared, together with the need for mules or hinny breeding. During the last five decades, Italian autochthonous donkey populations suffered from a severe reduction in population size, which led to the extinction of several breeds. At present, eight breeds remain, all classified by FAO as critically endangered or endangered: Asinara, Pantesco, Grigio Siciliano, Romagnolo, Amiatino, Sardo Grigio, Martina Franca, and Ragusano. To evaluate the extant genetic variability of Italian donkeys, we typed 16 microsatellite loci in 258 individuals from these breeds. The results highlighted moderate levels of inbreeding ( F IS = 0.127) and a significant partition of genetic variation into breeds, as suggested by fixation index ( F ST = 0.109) and analysis of molecular variance (10.86% of total variation assigned to the between‐breeds level) analyses. This was confirmed by a Bayesian clustering procedure that also highlighted a further partitioning at lower hierarchical levels corresponding to the farms of origin. This evidence suggests that an effective management strategy for Italian donkey populations should focus on breeds as conservation units. However, this requires a synergic management strategy at the farm level to maintain diversity and avoid inbreeding.  相似文献   
238.
White spotting phenotypes in horses can range in severity from the common white markings up to completely white horses. EDNRB, KIT, MITF, PAX3 and TRPM1 represent known candidate genes for such phenotypes in horses. For the present study, we re‐investigated a large horse family segregating a variable white spotting phenotype, for which conventional Sanger sequencing of the candidate genes’ individual exons had failed to reveal the causative variant. We obtained whole genome sequence data from an affected horse and specifically searched for structural variants in the known candidate genes. This analysis revealed a heterozygous ~1.9‐kb deletion spanning exons 10–13 of the KIT gene (chr3:77,740,239_77,742,136del1898insTATAT). In continuity with previously named equine KIT variants we propose to designate the newly identified deletion variant W22. We had access to 21 horses carrying the W22 allele. Four of them were compound heterozygous W20/W22 and had a completely white phenotype. Our data suggest that W22 represents a true null allele of the KIT gene, whereas the previously identified W20 leads to a partial loss of function. These findings will enable more precise genetic testing for depigmentation phenotypes in horses.  相似文献   
239.
Whole‐genome sequencing studies are vital to gain a thorough understanding of genomic variation. Here, we summarize the results of a whole‐genome sequencing study comprising 88 horses and ponies from diverse breeds at 19.1× average coverage. The paired‐end reads were mapped to the current EquCab3.0 horse reference genome assembly, and we identified approximately 23.5 million single nucleotide variants and 2.3 million short indel variants. Our dataset included at least 7 million variants that were not previously reported. On average, each individual horse genome carried ~5.7 million single nucleotides and 0.8 million small indel variants with respect to the reference genome assembly. The variants were functionally annotated. We provide two examples for potentially deleterious recessive alleles that were identified in a heterozygous state in individual genome sequences. Appropriate management of such deleterious recessive alleles in horse breeding programs should help to improve fertility and reduce the prevalence of heritable diseases. This comprehensive dataset has been made publicly available, will represent a valuable resource for future horse genetic studies and supports the goal of accelerating the rates of genetic gain in domestic horse.  相似文献   
240.
Four loci seem responsible for the dilution of the basic coat colours in horse: Dun (D), Silver Dapple (Z), Champagne (CH) and Cream (C). Apart from the current phenotypes ascribed to these loci, pearl has been described as yet another diluted coat colour in this species. To date, this coat colour seems to segregate only in the Iberian breeds Purebred Spanish horse and Lusitano and has also been described in breeds of Iberian origin, such as Quarter Horses and Paint Horse, where it is referred to as the ‘Barlink Factor’. This phenotype segregates in an autosomal recessive manner and resembles some of the coat colours produced by the champagne CHCH and cream CCr alleles, sometimes being difficult to distinguish among them. The interaction between compound heterozygous for the pearl Cprl and cream CCr alleles makes SLC45A2 the most plausible candidate gene for the pearl phenotype in horses. Our results provide documented evidence for the missense variation in exon 4 [SLC45A2:c.985G>A; SLC45A2:p.(Ala329Thr)] as the causative mutation for the pearl coat colour. In addition, it is most likely involved as well in the cremello, perlino and smoky cream like phenotypes associated with the compound CCr and Cprl heterozygous genotypes (known as cream pearl in the Purebred Spanish horse breed). The characterization of the pearl mutation allows breeders to identify carriers of the Cprl allele and to select this specific coat colour according to personal preferences, market demands or studbook requirements as well as to verify segregation within particular pedigrees.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号