首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   172篇
  免费   11篇
  国内免费   1篇
  184篇
  2024年   1篇
  2023年   3篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   6篇
  2018年   2篇
  2017年   6篇
  2016年   5篇
  2015年   7篇
  2014年   8篇
  2013年   9篇
  2012年   5篇
  2011年   6篇
  2010年   3篇
  2009年   4篇
  2008年   6篇
  2007年   7篇
  2006年   7篇
  2005年   6篇
  2004年   5篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1996年   2篇
  1995年   3篇
  1994年   5篇
  1993年   3篇
  1992年   6篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1984年   2篇
  1983年   5篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
11.
The E1 (epileptic) mouse is considered a model for complex partial seizures in humans. Seizures in E1 mice begin around 7-8 weeks of age and persist throughout life. To determine if astrocytic gliosis was present in adult seizing E1 mice, the distribution of glial fibrillary acidic protein (GFAP) was studied in the hippocampus using an antibody to GFAP. The mean number of GFAP-positive cells per square millimeter of hippocampus was approximately 15- to 40-fold higher in adult E1 mice than in nonseizing control C57BL/6J (B6) mice or in young nonseizing E1 mice. Relative GFAP concentration (expressed per milligram of total tissue protein) in hippocampus and cerebellum was estimated by densitometric scanning of peroxidase-stained western blots. GFAP concentration was 2.7-fold greater in hippocampus of adult seizing E1 mice than in the control B6 mice. No differences in GFAP content were detected between the strains in the cerebellum. Because gangliosides can serve as cell surface markers for changes in neuronal cytoarchitecture, they were analyzed to determine if the gliotic response in E1 mice was associated with changes in neural composition. Although the total ganglioside concentration of hippocampus, cerebral cortex, and cerebellum was similar in adult E1 and control B6 mice, a synaptic membrane enriched ganglioside, GD1a, was elevated in the adult E1 cerebral cortex and hippocampus. The findings indicate that E1 mice express a type of gliosis that is not accompanied by obvious neuronal loss.  相似文献   
12.
Diets given for 30 days with various mono-(MUFA) and poly-(PUFA) unsaturated fatty acid contents were evaluated for brain protection in magnesium-deficient mice: a commercial and three synthetic diets (n-6PUFA, n-3PUFA and MUFA-based chows enriched with 5% corn/sunflower oils 1:3, with 5% rapeseed oil and with 5% high oleic acid sunflower oil/sunflower oil 7:3, respectively). Unlike magnesium deprivation, they induced significant differences in brain and erythrocyte membrane phospholipid fatty acid compositions. n-3PUFA but not other diets protected magnesium-deficient mice against hyperactivity and moderately towards maximal electroshock- and NMDA-induced seizures. This diet also inhibited audiogenic seizures by 50%, preventing animal deaths. Because, like n-6PUFA diet, matched control MUFA diet failed to induce brain protections, alpha-linolenate (ALA) rather than reduced n-6 PUFA diet content is concluded to cause n-3PUFA neuroprotection. Present in vivo data also corroborate literature in vitro inhibition of T type calcium channels by n-3 PUFA, adding basis to ALA supplementation in human anti-epileptic/neuroprotective strategies.  相似文献   
13.
A caspase-3-activated DNase produces internucleosomal DNA cleavage (DNA laddering). We determined whether caspase-3 is activated by lithium-pilocarpine-induced status epilepticus in six brain regions with necrosis-induced DNA laddering. The thymuses of adult rats given methamphetamine or normal saline were used as controls for apoptosis. Some 6-8 h after methamphetamine treatment, thymocytes showed apoptosis by electron-microscopic examination, positive terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), DNA laddering, cleavage of caspase-3 into its active p17 subunit, active caspase-3 immunoreactivity, and a 25-fold increase in caspase-3-like activity. Six hours after SE, necrotic neurons by electron-microscopic examination in hippocampus, amygdala and piriform, entorhinal and frontal cortices showed no TUNEL and no DNA laddering. Twenty-four hours after seizures, most necrotic neurons were negative for TUNEL, some were positive, but all regions showed DNA laddering. However, 6 and 24 h after seizures, active caspase-3 immunoreactivity was negative, caspase-3-like activity did not increase, and western blot analysis failed to show the p17 subunit. In addition, 24 h after seizures,microdialytic perfusion of carbobenzoxy-valyl-alanyl-aspartyl (O-methylester) fluoromethylketone was not neuroprotective. Thus, caspase-3 is not activated in brain regions with seizure-induced neuronal necrosis with DNA laddering. Either caspase-activated DNase is activated by another enzyme, or a caspase-independent DNase is responsible for the DNA cleavage.  相似文献   
14.
脑电超慢涨落图技术在癫痫研究中的应用   总被引:6,自引:0,他引:6  
目的:观察脑内多种神经递质对癫痫发作的影响。方法:以癫痫患者和SD大鼠为实验对象,用脑功能检测的最新脑电超电涨落图分析仪(encephalofluctuogram technology,ET)长时程采集脑电信号,提取在脑电中载有脑神经递质调节系统的震荡信息(即S谱线),分析癫痫发作时的脑神经递质的变化。结果:患儿癫痫发作时,S谱线中S2(谷氨酸)增高;S1(γ-氨基丁酸)降低,造成S1<S2。S5  相似文献   
15.
16.
Effects of hyperthermia-induced seizures (HS) on GABAA and benzodiazepine (BDZ) receptor binding in immature rat brain were evaluated using in vitro autoradiography. HS were induced in 10-days-old rats by a regulated stream of moderately heated air directed 50 cm above the animals. Rats were killed 30 min, 24 h or 20 days after HS and their brains were used for in vitro autoradiography experiments to determine GABAA and BDZ receptor binding. GABAA binding was significantly enhanced in all brain areas evaluated 30 min after HS, an effect that endures 24 h and 20 days after seizures. Concerning BDZ receptor binding, a significant increase was detected in entorhinal and perirhinal cortices and decreased in basolateral amygdala 30 min following HS. One day after HS, animals demonstrated enhanced BDZ binding in the cingulate, frontal, posterior parietal, entorhinal, temporal and perirhinal cortices; striatum, accumbens, substantia nigra pars compacta and amygdala nuclei. Twenty days after HS enhanced BDZ binding was restricted in the cingulated, frontal, anterior and posterior parietal cortices, as well as in substantia nigra pars reticulata, whereas decreased values were found in accumbens nucleus and substantia nigra pars compacta. Our data indicate differential effects of HS in GABAA and BDZ binding in immature brain. HS-induced GABAA and BDZ changes are different from those previously described in experimental models of temporal lobe epilepsy in adult animals.  相似文献   
17.
1. Failure of anticonvulsive drugs to prevent seizures is a common complication of epilepsy treatment known as drug-refractory epilepsy but their causes are not well understood. It is hypothesized that the multidrug resistance P-glycoprotein (Pgp-170), the product of the MDR-1 gene that is normally expressed in several excretory tissues including the blood brain barrier, may be participating in the refractory epilepsy. 2. Using two monoclonal antibodies against Pgp-170, we investigated the expression and cellular distribution of this protein in the rat brain during experimentally induced epilepsy. Repeated seizures were induced in male Wistar rats by daily administration of 3-mercaptopropionic acid (MP) 45 mg/kg i.p. for either 4 days (MP-4) or 7 days (MP-7). Control rats received an equivalent volume of vehicle. One day after the last injection, rats were sacrificed and brains were processed for immunohistochemistry for Pgp-170. As it was previously described, Pgp-170 immunostaining was observed in some brain capillary endothelial cells of animals from control group. 3. Increased Pgp-170 immunoreactivity was detected in MP-treated animals. Besides the Pgp-170 expressed in blood vessels, neuronal, and glial immunostaining was detected in hippocampus, striatum, and cerebral cortex of MP-treated rats. Pgp-170 immunolabeled neurons and glial cells were observed in a nonhomogeneous distribution. MP-4 animals presented a very prominent Pgp-170 immunostaining in the capillary endothelium, surrounding astrocytes and some neighboring neurons while MP-7 group showed increased neuronal labeling. 4. Our results demonstrate a selective increase in Pgp-170 immunoreactivity in the brain capillary endothelial cells, astrocytes, and neurons during repetitive MP-induced seizures. 5. The role for this Pgp-170 overexpression in endothelium and astrocytes as a clearance mechanism in the refractory epilepsy, and the consequences of neuronal Pgp-170 expression remain to be disclosed.  相似文献   
18.
The neuropeptide galanin suppresses seizure activity in the hippocampus by inhibiting glutamatergic neurotransmission. Galanin may also modulate limbic seizures through interaction with other neurotransmitters in neuronal populations that project to the hippocampus. We examined the role of galanin receptors types 1 and 2 in the dorsal raphe (DR) in the regulation of serotonergic transmission and limbic seizures. Infusion of a mixed agonist of galanin receptors types 1 and 2 [galanin (1-29)] into the DR augmented the severity of limbic seizures in both rats and wild-type mice and concurrently reduced serotonin concentration in the DR and hippocampus as measured by immunofluorescence or HPLC. In contrast, injection of the galanin receptor type 2 agonist galanin (2-11) mitigated the severity of seizures in both species and increased serotonin concentration in both areas. Injection of both galanin fragments into the DR of galanin receptor type 1 knockout mice exerted anticonvulsant effects. Both the proconvulsant activity of galanin (1-29) and seizure suppression by galanin (2-11) were abolished in serotonin-depleted animals. Our data indicate that, in the DR, galanin receptors types 1 and 2 modulate serotonergic transmission in a negative and a positive fashion, respectively, and that these effects translate into either facilitation or inhibition of limbic seizures.  相似文献   
19.
Clinical observations and experimental studies have shown that hyperthermia can provoke febrile seizures, which are the most common type of pathological brain activity in children. We previously demonstrated that hyperthermia produced a depression of GABAergic neurotransmission in the hippocampus of immature rats in vitro. To investigate the possible mechanisms through which hyperthermia may modulate GABAergic neurotransmission in the hippocampus, whole-cell voltage clamp recordings were performed on CA1 pyramidal neurons in the immature rat brain slices. We found that hyperthermia (38.4-40 degrees C) when compared with baseline temperature of 32 degrees C reduced the frequency of both spontaneous inhibitory post-synaptic currents (sIPSCs) and miniature IPSCs (mIPSCs). Also, hyperthermia decreased the amplitudes of mIPSCs and reduced the mIPSC decay time constants and charge transfer. Non-stationary noise analysis of mIPSCs suggested that the number of open post-synaptic receptors but not single channel conductance was reduced during hyperthermia. Activation of adenylyl cyclase with forskolin prevented, whereas protein kinase A inhibitor N-(2-[p-bromocinnamylamino]ethyl)-5-isoquinolinesulfonamide potentiated, the hyperthermia (40 degrees C)-induced depression of evoked IPSCs (evIPSCs). But protein kinase C activator phorbol 12, 13-dibutyrate (PDBu) did not significantly affect this depression of evIPSCs induced by hyperthermia. Furthermore, hyperthermia-induced depression of evIPSCs was attenuated by 4-aminopyridine, but not by BaCl(2). These results suggest that hyperthermia reduces GABA release from pre-synaptic terminals, in part by blocking the adenylyl cyclase-protein kinase A signaling pathway and activating pre-synaptic 4-aminopyridine-sensitive K(+) channels. Also, the changes in amplitude and decay time constant of the mIPSCs may suggest that hyperthermia also decreases post-synaptic GABA(A) receptor function.  相似文献   
20.
The existence of long-lasting (15–18 h) alterations of neurotrasmitter amino acid levels following a single or repeated acoustic stimulations in audiogenic seizure-prone Rb1 and Rb2 mice and suizure-resistant Rb3 mice were investigated. The levels of glutamate, aspartate, glycine, taurine, and of some of their precursors: glutamine and serine were determined. Fourteen brain areas were examined. Alterations were found only in 6 brain areas (pons, olfactory bulbs, superior colliculus, inferior colliculus, olfactory tubercles and raphe). Most frequent occuring changes were observed in pons and olfactory tubercles. These changes concerned mainly the excitatory amino acids, glutamate, and aspartate. Alterations of taurine, glycine and serine were also recorded.Abbreviations GABA 4-aminobutyrate - Tau taurine - Gly glycine - Asp aspertate - Glu glutamate - Gln glutamine - Ser serine - OB olfactory bulbs - OT olfactory tubercles - Sr striatum - Se septum - Hy hypothalamus - Th thalamus - Hi hippocampus - A amygdala - SC superior colliculus - IC inferior colliculus - FC frontal cortex - C cerebellum - P pons medulla - Ra raphe - AA neurotransmitter amino acids - I inhibitory - E excitatory - SSL steady-state level Plesant memories of Lawrence Austin's sojourn in my group at Strasbourg gather upon me when I dedicate this article on this occasion for the contribution that Lawrence Austin has made for the cause of neurochemical researchers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号