首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   894篇
  免费   8篇
  国内免费   64篇
  2023年   1篇
  2022年   3篇
  2021年   10篇
  2020年   31篇
  2019年   31篇
  2018年   22篇
  2017年   25篇
  2016年   22篇
  2015年   16篇
  2014年   40篇
  2013年   78篇
  2012年   34篇
  2011年   79篇
  2010年   35篇
  2009年   70篇
  2008年   53篇
  2007年   68篇
  2006年   48篇
  2005年   41篇
  2004年   48篇
  2003年   30篇
  2002年   19篇
  2001年   22篇
  2000年   14篇
  1999年   9篇
  1998年   7篇
  1997年   9篇
  1996年   14篇
  1995年   11篇
  1994年   13篇
  1993年   8篇
  1992年   12篇
  1991年   4篇
  1990年   9篇
  1989年   1篇
  1988年   2篇
  1987年   3篇
  1986年   5篇
  1985年   5篇
  1984年   5篇
  1983年   2篇
  1982年   2篇
  1980年   1篇
  1979年   1篇
  1976年   2篇
  1972年   1篇
排序方式: 共有966条查询结果,搜索用时 546 毫秒
961.
A two-stage autocatalytic hydrothermal pretreatment was proposed to improve the cassava straw utilization. The two-stage hydrothermal pretreatment was a process of which the first stage adopted lower-severity conditions (temperature and time) to improve the C-5 sugar yields and the second stage employed more severities to enhance C-6 sugar yield during enzyme hydrolysis. After employing this process, the maximum yields of C-5 and C-6 sugars were 68.49% and 81.02% when treating at 180 °C for 60 min for the first stage and 200 °C for 20 min for the second stage. Based on this, the autocatalytic pretreatment was investigated, which was a method to further enhance the pretreatment intensity by recycling pretreated liquid rich in byproduct organic acids (acetic acid, lactic acid and formic acid) during two-stage hydrothermal pretreatment. The results showed that the C-5 sugar yields of the first stage increased to 81.12% when recycled pretreated liquid twice, which led to 0.93 wt% byproduct organic acid. After the second stage, the C-6 sugar yield increased to 88.60% during enzymatic hydrolysis. Besides, mass balance and development potentials were analyzed. The results revealed that two-stage autocatalytic hydrothermal pretreatment could effectively enhance pretreatment intensity and provide promising methods of directionally depolymerizing cassava straws.  相似文献   
962.
Parthenolide is a naturally occurring terpene with promising anticancer properties, particularly in the context of acute myeloid leukemia (AML). Optimization of this natural product has been challenged by limited opportunities for the late-stage functionalization of this molecule without affecting the pharmacologically important α-methylene-γ-lactone moiety. Here, we report the further development and application of a chemoenzymatic strategy to afford a series of new analogs of parthenolide functionalized at the aliphatic positions C9 and C14. Several of these compounds were determined to be able to kill leukemia cells and patient-derived primary AML specimens with improved activity compared to parthenolide, exhibiting LC50 values in the low micromolar range. These studies demonstrate that different O–H functionalization chemistries can be applied to elaborate the parthenolide scaffold and that modifications at the C9 or C14 position can effectively enhance the antileukemic properties of this natural product. The C9-functionalized analogs 22a and 25b were identified as the most interesting compounds in terms of antileukemic potency and selectivity toward AML versus healthy blood cells.  相似文献   
963.
Bacillus subtilis lipase A (BSLA) has been extensively studied through protein engineering; however, its immobilization and behavior as an insoluble biocatalyst have not been extensively explored. In this work, for the first time, a direct immobilization of recombinant BSLA from microbial culture supernatant was reported, using chemically modified porous with different electrostatic, hydrophobic, hydrophilic, and hydrophilic−hydrophobic enzyme-support interactions. The resulting biocatalysts were evaluated based on their immobilization kinetics, activity expression (pH 7.4), thermal stability (50 °C), solvent resistance and substrate preference. Biocatalysts obtained using glyoxyl silica support resulted in the selective immobilization of BSLA, resulting in an activity recovery of 50 % and an outstanding aqueous stabilization factor of 436, and 9.5 in isopropyl alcohol, compared to the free enzyme. This selective immobilization methodology of BSLA allows to efficiently generate immobilized biocatalysts, thus avoiding laborious purification steps from cell culture supernatant, which is usually a limiting step when large amounts of enzyme variants or candidates are assessed as immobilized biocatalysts. Direct enzyme immobilization from cell supernatant provides an interesting tool which can be used to facilitate the development and assessment of immobilized biocatalysts from engineered enzyme variants and mutant libraries, especially in harsh conditions, such as high temperatures or non-aqueous solvents, or against non-water-soluble substrates. Furthermore, selective immobilization approaches from cell culture supernatant or clarified lysates could help bridging the gap between protein engineering and enzyme immobilization, allowing for the implementation of immobilization steps in high throughput enzyme screening platforms for their potential use in directed evolution campaigns.  相似文献   
964.
Summary The design, synthesis and catalytic properties of a cyclic branched peptide carrier that possesses the catalytic triad residues of the serine proteases is reported. The synthesis of the peptide model was totally completed on solid support using three different orthogonal amino protecting groups. Hydrolytic activity measurements against Suc-Ala-Ala-Ala-pNA substrate showed that it is hydrolysed by the peptide model to a small extent. Despite this small hydrolytic activity, it is the first time, to our knowledge, that hydrolysis of such a substrate is reported by an enzyme model compound. Contrary, this enzyme model peptide showed considerable activity against the Boc-Ala-pNP substrate (k cat =0.414 min−1 andK m =0.228 mm). These results suggest that the designed carrier brings in appropriate contact the catalytic triad residues (Ser, His, Asp) resulting in the obtained hydrolytic activity.  相似文献   
965.
The multiobjective problem of minimizing all intermediate concentrations is solved for a model of glycolysis, the pentose monophosphate shunt and the glutathione system in human erythrocytes. It turns out that one solution out of four obtained corresponds qualitatively to the real system. Furthermore, it is shown that for any reaction system, the mentioned optimality principle implies distinct time hierarchy in that some reactions are infinitely fast and subsist in quasi-equilibrium. Finally, the relationships to the standard method of deriving enzymatic rate laws are discussed.  相似文献   
966.
Kinetic resolution of a chiral alcohol, 4-hydroxy-3-methyl-2-(2′-propenyl)-2-cyclopentenone (HMPC), a key intermediate for the production of prallethrin insecticides, was successfully carried out by enantioselective hydrolysis of (RS)-HMPC acetate using calcium alginate gel-entrapped cells of a newly isolated esterase-producing bacterium Acinetobacter sp. CGMCC 0789. When the effect of different cosolvents was investigated, it was found that isopropanol could markedly enhance the activity and enantioselectivity of the immobilized cells. The optimum concentration of isopropanol was 10% (v/v) where immobilized cells still showed good operational stability. After 10 cycles of reaction, no significant decrease in the enzyme activity was observed. The catalytic specificity constants (Vmax/Km) for both enantiomers of the substrate were determined with partially purified enzyme, giving 0.0184 and 0.671 h−1 for the (S)- and (R)-ester, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号