首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2618篇
  免费   113篇
  国内免费   428篇
  2023年   38篇
  2022年   58篇
  2021年   61篇
  2020年   63篇
  2019年   94篇
  2018年   66篇
  2017年   83篇
  2016年   93篇
  2015年   110篇
  2014年   153篇
  2013年   363篇
  2012年   208篇
  2011年   125篇
  2010年   87篇
  2009年   115篇
  2008年   130篇
  2007年   128篇
  2006年   116篇
  2005年   91篇
  2004年   113篇
  2003年   79篇
  2002年   70篇
  2001年   64篇
  2000年   48篇
  1999年   53篇
  1998年   46篇
  1997年   42篇
  1996年   30篇
  1995年   35篇
  1994年   35篇
  1993年   27篇
  1992年   21篇
  1991年   20篇
  1990年   14篇
  1989年   20篇
  1988年   20篇
  1987年   20篇
  1986年   11篇
  1985年   23篇
  1984年   25篇
  1983年   9篇
  1982年   15篇
  1980年   11篇
  1979年   21篇
  1978年   17篇
  1977年   13篇
  1976年   21篇
  1975年   10篇
  1973年   13篇
  1972年   10篇
排序方式: 共有3159条查询结果,搜索用时 15 毫秒
91.
Previous investigations into the optimisation of internal plates have mostly focused on the material properties of the implant. In this work, we optimise the shape, size and placement of the plate for successfully minimising bone remodelling around the implant. A design optimisation algorithm based on strain energy density criterion, combined with the finite element analysis, has been used in this study. The main optimisation goal was to reduce this change and keep it close to the conditions of an intact femur. The results suggest that the anterolateral side of the bone would be the optimum location for the plate, as for the geometry, the optimum moves towards having a thick, wide and short plate. These important results could be directly applicable to orthopaedic surgeons treating a femur fracture with internal plates. Since the optimisation algorithm remains the same for any patient, this advancement provides the surgeon with a tool to minimise the post surgery remodelling by trying to maintain the natural structure of the bone.  相似文献   
92.
A combined experimental/numerical study was performed to calculate the 3D octahedral shear strain map in a mouse tibia loaded axially. This study is motivated by the fact that the bone remodelling analysis, in this in vivo mouse model should be performed at the zone of highest mechanical stimulus to maximise the measured effects. Accordingly, it is proposed that quantification of bone remodelling should be performed at the tibial crest and at the distal diaphysis. The numerical model could also be used to furnish a more subtle analysis as a precise correlation between local strain and local biological response can be obtained with the experimentally validated numerical model.  相似文献   
93.
Actin filaments are a major component of the cytoskeleton and play a crucial role in cell mechanotransduction. F-actin networks can be reconstituted in vitro and their mechanical behaviour has been studied experimentally. Constitutive models that assume an idealised network structure, in combination with a non-affine network deformation, have been successful in capturing the elastic response of the network. In this study, an affine network deformation is assumed, in which we propose an alternative 3D finite strain constitutive model. The model makes use of a micro-sphere to calculate the strain energy density of the network, which is represented as a continuous distribution of filament orientations in space. By incorporating a simplified sliding mechanism at the filament-to-filament junctions, premature filament locking, inherent to affine network deformation, could be avoided. The model could successfully fit experimental shear data for a specific cross-linked F-actin network, demonstrating the potential of the novel model.  相似文献   
94.
Soft tissues are anisotropic materials yet a majority of mechanical property tests have been uniaxial, which often failed to recapitulate the tensile response in other directions. This paper aims to study the feasibility of determining material parameters of anisotropic tissues by uniaxial extension with a minimal loss of anisotropic information. We assumed that by preselecting a certain constitutive model, we could give the constitutive parameters based on uniaxial extension data from orthogonal strip samples. In our study, the Holzapfel–Weizsäcker type strain energy density function (H–W model) was used to determine the material parameters of arterial walls from two fresh donation bodies. The key points we applied were the relationships between strain components in uniaxial tensile tests and the methods of stochastic optimisation. Further numerical experiments were taken. The estimate–effect ratio, defined by the number of data with the precision of estimation less than 0.5% over whole size of data, was calculated to demonstrate the feasibility of our method. The material parameters for Chinese aorta and pulmonary artery were given with the maximum root mean square (RMS) errors 0.042, and the minimal estimate–effect ratio in numerical experiments was 90.79%. Our results suggest that the constitutive parameters of arterial walls can be determined from uniaxial extension data, given the passive mechanical behaviour governed by H–W model. This method may apply to other tissues using different constitutive models.  相似文献   
95.
96.
It is always recommended to use more implants for supporting a prosthesis in the immediate loading condition than in the classical two-stage treatment procedure. By means of the finite element (FE) method, the influence of the number of implants used in immediately loaded fixed partial prosthesis (FPP) on the load distribution was investigated, considering the abutment geometry. Two 3D FE models were studied employing four implants to support a FPP in the premaxilla. One model was designed with straight abutments and the other with 20°-angled abutments. The results concerning implant displacements, stresses and strains were compared with those of two implant-supported FPPs, obtained in a previous study. A noticeable reduction in the determined biomechanical bone loading was observed with the use of more implants in supporting an immediately loaded prosthesis. This study confirms that the use of additional numbers of implants in an immediately loaded prosthesis is highly recommended.  相似文献   
97.
Abstract

When designing any rehabilitation, sportswear or exoskeleton device the mechanical behaviour of the body segment must be known, specifically the skin, because an excessive tissue strain may lead to ulceration and bedsores. To date, it is not known if the kinematic variability between subjects have an effect on the skin strain field, and therefore, in the design and manufacturing of rehabilitation products, such as orthoses. Several studies have analysed the skin deformation during human motion, nevertheless, the comparison between the skin strain field in different subjects during normal or pathological gait has not been reported yet. This work presents a comparison of skin strain analysis for different gait patterns to study the differences between people and, specifically, if it is possible to standardize the orthotic design between subjects with the same gait disorder. Moreover, the areas with relatively minimum strain during the ankle-foot motion are compared to improve the design of structural parts of rehabilitation devices. In this case, a validated 3D digital image correlation system has been used for this purpose combined with strain ellipse theory. The results demonstrate variations in the skin strain field between subjects with the same pathology and similarities between subjects with normal gait. However, more studies and experiments are necessaries to validate this hypothesis and also to test it between different gait pathologies.  相似文献   
98.
Two geraniol synthases (GES), from Valeriana officinalis (VoGES) and Lippia dulcis (LdGES), were isolated and were shown to have geraniol biosynthetic activity with Km values of 32 µM and 51 µM for GPP, respectively, upon expression in Escherichia coli. The in planta enzymatic activity and sub-cellular localization of VoGES and LdGES were characterized in stable transformed tobacco and using transient expression in Nicotiana benthamiana. Transgenic tobacco expressing VoGES or LdGES accumulate geraniol, oxidized geraniol compounds like geranial, geranic acid and hexose conjugates of these compounds to similar levels. Geraniol emission of leaves was lower than that of flowers, which could be related to higher levels of competing geraniol-conjugating activities in leaves. GFP-fusions of the two GES proteins show that VoGES resides (as expected) predominantly in the plastids, while LdGES import into to the plastid is clearly impaired compared to that of VoGES, resulting in both cytosolic and plastidic localization. Geraniol production by VoGES and LdGES in N. benthamiana was nonetheless very similar. Expression of a truncated version of VoGES or LdGES (cytosolic targeting) resulted in the accumulation of 30% less geraniol glycosides than with the plastid targeted VoGES and LdGES, suggesting that the substrate geranyl diphosphate is readily available, both in the plastids as well as in the cytosol. The potential role of GES in the engineering of the TIA pathway in heterologous hosts is discussed.  相似文献   
99.
Hexavalent chromium contamination is a serious problem due to its high toxicity and carcinogenic effects on the biological systems. The enzymatic reduction of toxic Cr(VI) to the less toxic Cr(III) is an efficient technology for detoxification of Cr(VI)-contaminated industrial effluents. In this regard, a chromate reductase enzyme from a novel Ochrobactrum sp. strain Cr-B4, having the ability to detoxify Cr(VI) contaminated sites, has been partially purified and characterized. The molecular mass of this chromate reductase was found to be 31.53 kD, with a specific activity 14.26 U/mg without any addition of electron donors. The temperature and pH optima for chromate reductase activity were 40°C and 8.0, respectively. The activation energy (Ea) for the chromate reductase was found to be 34.7 kJ/mol up to 40°C and the activation energy for its deactivation (Ed) was found to be 79.6 kJ/mol over a temperature range of 50–80°C. The frequency factor for activation of chromate reductase was found to be 566.79 s?1, and for deactivation of chromate reductase it was found to be 265.66 × 103 s?1. The reductase activity of this enzyme was affected by the presence of various heavy metals and complexing agents, some of which (ethylenediamine tetraacetic acid [EDTA], mercaptoethanol, NaN3, Pb2+, Ni2+, Zn2+, and Cd2+) inhibited the enzyme activity, while metals like Cu2+ and Fe3+ significantly enhanced the reductase activity. The enzyme followed Michaelis–Menten kinetics with Km of 104.29 µM and a Vmax of 4.64 µM/min/mg.  相似文献   
100.
Rapamycin has been shown to extend lifespan in numerous model organisms including mice, with the most dramatic longevity effects reported in females. However, little is known about the functional ramifications of this longevity‐enhancing paradigm in mammalian tissues. We treated 24‐month‐old female C57BL/6J mice with rapamycin for 3 months and determined health outcomes via a variety of noninvasive measures of cardiovascular, skeletal, and metabolic health for individual mice. We determined that while rapamycin has mild transient metabolic effects, there are significant benefits to late‐life cardiovascular function with a reversal or attenuation of age‐related changes in the heart. RNA‐seq analysis of cardiac tissue after treatment indicated inflammatory, metabolic, and antihypertrophic expression changes in cardiac tissue as potential mechanisms mediating the functional improvement. Rapamycin treatment also resulted in beneficial behavioral, skeletal, and motor changes in these mice compared with those fed a control diet. From these findings, we propose that late‐life rapamycin therapy not only extends the lifespan of mammals, but also confers functional benefits to a number of tissues and mechanistically implicates an improvement in contractile function and antihypertrophic signaling in the aged heart with a reduction in age‐related inflammation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号