首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1600篇
  免费   76篇
  国内免费   6篇
  2023年   6篇
  2022年   12篇
  2021年   20篇
  2020年   18篇
  2019年   43篇
  2018年   45篇
  2017年   23篇
  2016年   34篇
  2015年   55篇
  2014年   127篇
  2013年   130篇
  2012年   101篇
  2011年   113篇
  2010年   84篇
  2009年   109篇
  2008年   101篇
  2007年   92篇
  2006年   113篇
  2005年   85篇
  2004年   99篇
  2003年   67篇
  2002年   43篇
  2001年   13篇
  2000年   16篇
  1999年   13篇
  1998年   12篇
  1997年   11篇
  1996年   3篇
  1995年   15篇
  1994年   10篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   5篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   4篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有1682条查询结果,搜索用时 15 毫秒
61.
摘要 目的:探讨阿替普酶联合阿加曲班治疗急性缺血性脑卒中(AIS)对患者内皮损伤、血液流变学和神经功能损伤因子的影响。方法:采用随机数字表法,将南方医科大学珠江医院神经内科2019年8月~2021年7月期间收治的94例AIS患者分为对照组(n=47)和研究组(n=47)。对照组患者接受阿替普酶治疗,研究组患者接受阿替普酶联合阿加曲班治疗,对比两组疗效、内皮损伤指标、血液流变学指标、神经功能损伤因子、美国国立卫生研究所卒中量表(NIHSS)评分、Barthel指数(BI)评分和不良反应。结果:与对照组治疗后相比,研究组治疗后的临床总有效率更高(P<0.05)。与对照组治疗后相比,研究组治疗后内皮素-1(ET-1)水平更低,降钙素基因相关肽(CGRP)、一氧化氮(NO)水平更高(P<0.05)。与对照组治疗后相比,研究组治疗后血浆黏度(PV)、全血黏度(WBV)、红细胞压积(HCT)、纤维蛋白原(FIB)水平更低(P<0.05)。与对照组治疗后相比,研究组治疗后神经元特异性烯醇化酶(NSE)、S100β蛋白水平更低(P<0.05)。与对照组治疗后相比,研究组治疗后NIHSS评分更低,BI评分更高(P<0.05)。两组不良反应发生率组间对比无差异(P>0.05)。结论:阿替普酶联合阿加曲班应用于AIS患者,可改善机体血液流变学,减轻内皮功能损伤和神经功能损害。  相似文献   
62.
Methylglyoxal (MG) is a by-product of glucose metabolism and its accumulation has been linked to the development of diabetic complications such as retinopathy and nephropathy by affecting multiple signalling pathways. However, its influence on the intracellular Ca2+ homeostasis and particularly Ca2+ entry, which has been reported to be mediated via TRPA1 channels in DRG neurons, has not been studied in much detail in other cell types. In this study, we report the consequences of acute and long-term MG application on intracellular Ca2+ levels in endothelial cells. We showed that acute MG application doesn’t evoke any instantaneous changes in the intracellular Ca2+ concentration in immortalized mouse cardiac endothelial cells (MCECs) and murine microvascular endothelial cells (muMECs). In contrast, an MG-induced rise in intracellular Ca2+ level was observed in primary mouse mesangial cells within 30 s, indicating that the modulation of Ca2+ homeostasis by MG is strictly cell type specific. The formation of the MG-derived advanced glycation end product (AGE) MG-H1 was found to be time and concentration-dependent in MCECs. Likewise, MG pre-incubation for 6 h increased the angiotensin II-evoked Ca2+ entry in MCECs and muMECs which was abrogated by inhibition of Calcium release activated calcium (CRAC) channels with GSK-7975A, but unaffected by an inhibitor specific to TRPA1 channels. Quantitative PCR analysis revealed that MG pre-treatment did not affect expression of the genes encoding the angiotensin receptors AT1R (Agtr 1a & Agtr 1b), Trpa1 nor Orai1, Orai2, Orai3, Stim1, Stim2 and Saraf which operate as constituents or regulators of CRAC channels and store-operated Ca2+ entry (SOCE) in other cell types. Together, our results show that long-term MG stimulation leads to the formation of glycation end products, which facilitates the agonist-evoked Ca2+ entry in endothelial cells, and this could be a new pathway that might lead to MG-evoked vasoregression observed in diabetic vasculopathies.  相似文献   
63.
Our previous studies demonstrated the formation of structurally diverse DNA-containing microparticles (DNA MPs) in PCR with Mg-pyrophosphate (MgPPi) as the structure-forming component. These DNA MPs were referred to major structural types: microdisks (2D MPs) with nanometer thickness and 3D MPs with sophisticated morphology and constructed from intersecting disks and their segments. Little is known about factors that influence both the morphology and size of DNA MPs, and the present study was aimed at fulfilling this gap. We showed that the addition of Mn2+ cations to PCR mixtures caused the profound changes in MPs morphology, depending on DNA polymerase used (KlenTaq or Taq). Asymmetric PCR with 20-fold decrease in the concentration of one of two primers facilitated the predominant formation of microdisks with unusual structure. The addition of 1 mM Na-pyrophosphate to PCR mixtures with synthesized DNA and subsequent thermal cycling (10–15 cycles) were optimal to produce microdisks or nanometer 3D particles. Using electron microscopy, we studied also the structure of inorganic micro- and nanoparticles from MgPPi, formed during multiple heating and cooling cycles of a mixture of Mg2+ and Na-pyrophosphate in various regimes. Also, we found the conditions to yield planar (Mg·Mn)PPi nanocrystals (diameter ~100 nm and thickness ~10 nm) which efficiently adsorbed exogenous DNA. These inorganic nanoparticles are promising for DNA delivery in transfection studies. Mechanisms to be involved in structural modifications of MPs and perspectives of their practical application are discussed.  相似文献   
64.
Impaired angiogenesis leads to long-term complications and is a major contributor of the high morbidity in patients with Diabetes Mellitus (DM). Methylglyoxal (MGO) is a glycolysis byproduct that accumulates in DM and is detoxified by the Glyoxalase 1 (Glo1). Several studies suggest that MGO contributes to vascular complications through mechanisms that remain to be elucidated. In this study we have clarified for the first time the molecular mechanism involved in the impairment of angiogenesis induced by MGO accumulation.Angiogenesis was evaluated in mouse aortic endothelial cells isolated from Glo1-knockdown mice (Glo1KD MAECs) and their wild-type littermates (WT MAECs). Reduction in Glo1 expression led to an accumulation of MGO and MGO-modified proteins and impaired angiogenesis of Glo1KD MAECs. Both mRNA and protein levels of the anti-angiogenic HoxA5 gene were increased in Glo1KD MAECs and its silencing improved both their migration and invasion. Nuclear NF-?B-p65 was increased 2.5-fold in the Glo1KD as compared to WT MAECs. Interestingly, NF-?B-p65 binding to HoxA5 promoter was also 2-fold higher in Glo1KD MAECs and positively regulated HoxA5 expression in MAECs. Consistent with these data, both the exposure to a chemical inhibitor of Glo1 “SpBrBzGSHCp2” (GI) and to exogenous MGO led to the impairment of migration and the increase of HoxA5 mRNA and NF-?B-p65 protein levels in microvascular mouse coronary endothelial cells (MCECs).This study demonstrates, for the first time, that MGO accumulation increases the antiangiogenic factor HoxA5 via NF-?B-p65, thereby impairing the angiogenic ability of endothelial cells.  相似文献   
65.
66.
67.
2-Methoxyestradiol, an endogenous metabolite of 17β-estradiol, is known to have antitumor and antiangiogenic actions. The effects of 2-methoxyestradiol on ionic currents were investigated in an endothelial cell line (HUV-EC-C) originally derived from human umbilical vein. In the whole-cell patch-clamp configuration, 2-methoxyestradiol (0.3–30 μm) reversibly suppressed the amplitude of K+ outward currents. The IC 50 value of the 2-methoxyestradiol-induced decrease in outward current was 3 μm. Evans blue (30 μm) or niflumic acid (30 μm), but not diazoxide (30 μm), reversed the 2-methoxyestradiol-induced decrease in outward current. In the inside-out configuration, application of 2-methoxyestradiol (3 μm) to the bath did not modify the single-channel conductance of large-conductance Ca2+-activated K+ (BKCa) channels; however, it did suppress the channel activity. 2-Methoxyestradiol (3 μm) produced a shift in the activation curve of BKCa channels to more positive potentials. Kinetic studies showed that the 2-methoxyestradiol-induced inhibition of BKCa channels is primarily mediated by a decrease in the number of long-lived openings. 2-Methoxyestradiol-induced inhibition of the channel activity was potentiated by membrane stretch. In contrast, neither 17β-estradiol (10 μm) nor estriol (10 μm) affected BKCa channel activity, whereas 2-hydroxyestradiol (10 μm) slightly suppressed it. Under current-clamp condition, 2-methoxyestradiol (10 μm) caused membrane depolarization and Evans blue (30 μm) reversed 2-methoxyestradiol-induced depolarization. The present study provides evidence that 2-methoxyestradiol can suppress the activity of BKCa channels in endothelial cells. These effects of 2-methoxyestradiol on ionic currents may contribute to its effects on functional activity of endothelial cells. Received: 27 November 2000/Revised: 13 April 2001  相似文献   
68.
69.
Vascular proteomics: linking proteomic and metabolomic changes   总被引:2,自引:0,他引:2  
Mayr M  Mayr U  Chung YL  Yin X  Griffiths JR  Xu Q 《Proteomics》2004,4(12):3751-3761
  相似文献   
70.
The purpose of this research was to investigate the effects of processing conditions on the characteristics of solid lipid microparticles (SLM) with a potential application as carriers for pulmonary administration. Compritol (5.0% wt/wt) SLM dispersions were prepared by rotor-stator homogenization, at different surfactant concentrations and emulsification times. The SLM were characterized, in terms of morphology and size, after lyophilization and sterilization by autoclaving process. In vivo assessment was carried out in rats by intratracheal instillation of either placebo or SLM dispersion, and by bronchoalveolar lavage for cytological analysis. Mean particle size of 4 to 5 μm was achieved using 0.3% and 0.4% (wt/wt) of emulsifier (Poloxamer 188) and emulsification times of 2 and 5 minutes. The particles showed spherical shape and smooth surface. The morphology of microparticles, the size, and the size distribution were not substantially modified after lyophilization and sterilization. Total cell counts showed no significant differences between placebo and SLM 0.5% or 2.5% groups. Regarding cytology, percentage of polymorphonuclear neutrophils and macrophages did not significantly differ between groups. These results suggest that a single intratracheal administration of the SLMs does not induce a significant inflammatory airway response in rats and that the SLMs might be a potential carrier for encapsulated drug via the pulmonary route.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号