全文获取类型
收费全文 | 1600篇 |
免费 | 77篇 |
国内免费 | 6篇 |
专业分类
1683篇 |
出版年
2023年 | 7篇 |
2022年 | 12篇 |
2021年 | 20篇 |
2020年 | 18篇 |
2019年 | 43篇 |
2018年 | 45篇 |
2017年 | 23篇 |
2016年 | 34篇 |
2015年 | 55篇 |
2014年 | 127篇 |
2013年 | 130篇 |
2012年 | 101篇 |
2011年 | 113篇 |
2010年 | 84篇 |
2009年 | 109篇 |
2008年 | 101篇 |
2007年 | 92篇 |
2006年 | 113篇 |
2005年 | 85篇 |
2004年 | 99篇 |
2003年 | 67篇 |
2002年 | 43篇 |
2001年 | 13篇 |
2000年 | 16篇 |
1999年 | 13篇 |
1998年 | 12篇 |
1997年 | 11篇 |
1996年 | 3篇 |
1995年 | 15篇 |
1994年 | 10篇 |
1993年 | 5篇 |
1992年 | 8篇 |
1991年 | 5篇 |
1990年 | 7篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 3篇 |
1986年 | 5篇 |
1985年 | 2篇 |
1984年 | 6篇 |
1983年 | 5篇 |
1982年 | 3篇 |
1981年 | 1篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1978年 | 1篇 |
1976年 | 4篇 |
1974年 | 1篇 |
1973年 | 2篇 |
1970年 | 1篇 |
排序方式: 共有1683条查询结果,搜索用时 15 毫秒
31.
The cellular and molecular mechanisms that mediate vascular calcification remain poorly understood. In our previous study, oxysterol cholestane-3beta, 5alpha, 6beta-triol (Triol) was shown to promote vascular smooth muscle cells (VSMCs) calcification. In this study, by using direct coculture, non-contact transwell coculture, and culture with conditioned media, we investigated the roles of endothelial cells (ECs) and macrophages in the regulation of VSMCs calcification in the absence or presence of Triol. In vitro calcification was induced by incubation of VSMCs with beta-glycerophosphate. The results showed that ECs inhibited VSMCs calcification, as manifested by the reduction of calcium deposition in extracellular matrix. This effect of ECs on calcification was via the secreted soluble factors. Furthermore, the stimulation of ECs by Triol had no influence on ECs inhibition of calcification. On the other hand, macrophages promoted VSMCs calcification via the secreted soluble factors such as reactive oxygen species, which was further enhanced by Triol. Our results supported the roles for ECs and macrophages in vascular calcification, modulated by oxysterols in atherosclerotic plaque. 相似文献
32.
This study reveals that it is possible to obtain a specific cell response towards low-fouling carboxymethyl dextran (CMD) surfaces bearing the RGD adhesive peptide in fibrin. To avoid cell sedimentation on surfaces observed in traditional cell culture systems, CMD surfaces bearing RGD were vertically embedded in fibrin containing human umbilical vein endothelial cells (HUVEC) and their effect over cells was investigated. Compared to the CMD surfaces and to CMD layers bearing the negative control RGE, RGD coatings promoted cell adhesion, induced focal contact formation indicated by co-localization of vinculin and actin fibers, and presented a significant effect over HUVEC net growth during the first 24 h of the culture, as revealed by Ki67 staining and cell counting. The intracellular localization of caveolin-1 combined with the expression of beta 1 integrins was investigated and the orientation of HUVEC towards and on the RGD surfaces was studied. When compared to the negative controls, HUVEC responded to the RGD surface in fibrin resulting in acceleration of morphological changes. RGD surfaces supported fibrin degradation by HUVEC as revealed by fluorescent fibrin experiments as well as multi-cellular structure formation, vacuolation and lumen formation. 相似文献
33.
Miura A Honma R Togashi T Yanagisawa Y Ito E Imai J Isogai T Goshima N Watanabe S Nomura N 《FEBS letters》2006,580(30):6871-6879
Endothelial cells play an important role in terms of biological functions by responding to a variety of stimuli in the blood. However, little is known about the molecular mechanism involved in rendering the variety in the cellular response. To investigate the variety of the cellular responses against exogenous stimuli at the gene expression level, we attempted to describe the cellular responses with comprehensive gene expression profiles, dissect them into multiple response patterns, and characterize the response patterns according to the information accumulated so far on the genes included in the patterns. We comparatively analyzed in parallel the gene expression profiles obtained with DNA microarrays from normal human coronary artery endothelial cells (HCAECs) stimulated with multiple cytokines, interleukin-1β, tumor necrosis factor-, interferon-β, interferon-γ, and oncostatin M, which are profoundly involved in various functional responses of endothelial cells. These analyses revealed that the cellular responses of HCAECs against these cytokines included at least 15 response patterns specific to a single cytokine or common to multiple cytokines. Moreover, we statistically extracted genes contained within the individual response patterns and characterized the response patterns with the genes referring to the previously accumulated findings including the biological process defined by the Gene Ontology Consortium (GO). Out of the 15 response patterns in which at least one gene was successfully extracted through the statistical approach, 11 response patterns were differentially characterized by representing the number of genes contained in individual criteria of the biological process in the GO only. The approach to dissect cellular responses into response patterns and to characterize the pattern at the gene expression level may contribute to the gaining of insight for untangling the diversity of cellular functions. 相似文献
34.
Inhibition of large-conductance calcium-activated potassium channel by 2-methoxyestradiol in cultured vascular endothelial (HUV-EC-C) cells 总被引:4,自引:0,他引:4
2-Methoxyestradiol, an endogenous metabolite of 17β-estradiol, is known to have antitumor and antiangiogenic actions. The
effects of 2-methoxyestradiol on ionic currents were investigated in an endothelial cell line (HUV-EC-C) originally derived
from human umbilical vein. In the whole-cell patch-clamp configuration, 2-methoxyestradiol (0.3–30 μm) reversibly suppressed the amplitude of K+ outward currents. The IC
50 value of the 2-methoxyestradiol-induced decrease in outward current was 3 μm. Evans blue (30 μm) or niflumic acid (30 μm), but not diazoxide (30 μm), reversed the 2-methoxyestradiol-induced decrease in outward current. In the inside-out configuration, application of 2-methoxyestradiol
(3 μm) to the bath did not modify the single-channel conductance of large-conductance Ca2+-activated K+ (BKCa) channels; however, it did suppress the channel activity. 2-Methoxyestradiol (3 μm) produced a shift in the activation curve of BKCa channels to more positive potentials. Kinetic studies showed that the 2-methoxyestradiol-induced inhibition of BKCa channels is primarily mediated by a decrease in the number of long-lived openings. 2-Methoxyestradiol-induced inhibition
of the channel activity was potentiated by membrane stretch. In contrast, neither 17β-estradiol (10 μm) nor estriol (10 μm) affected BKCa channel activity, whereas 2-hydroxyestradiol (10 μm) slightly suppressed it. Under current-clamp condition, 2-methoxyestradiol (10 μm) caused membrane depolarization and Evans blue (30 μm) reversed 2-methoxyestradiol-induced depolarization. The present study provides evidence that 2-methoxyestradiol can suppress
the activity of BKCa channels in endothelial cells. These effects of 2-methoxyestradiol on ionic currents may contribute to its effects on functional
activity of endothelial cells.
Received: 27 November 2000/Revised: 13 April 2001 相似文献
35.
目的研究3,4苯并芘(BaP)对人脐血来源的内皮祖细胞(EPC)生物学功能的影响。方法密度梯度离心法分离获取人脐血单个核细胞,采用贴壁培养法培养MNC中的EPC,通过Dil标记的乙酰化低密度脂蛋白(Dil-ac-LDL)摄取实验和FITC标记的植物凝集素(FITC-UEA-I lectin)结合实验鉴定细胞。消化收集第3代细胞,分别采用细胞计数试剂盒(CCK-8)、黏附能力测定实验、Transwell小室法及Matrigel体外成血管试验观察BaP对EPC增殖能力、粘附能力、迁移能力及成血管能力的影响,并检测各组细胞培养上清液SOD含量。采用单因素方差分析及LSD-t检验进行统计学分析。结果采用贴壁培养法能成功培养出EPC;与正常对照组相比,BaP呈浓度依赖性降低EPC的增殖能力{正常对照组OD(1.02±0.04)显著高于BaP各组[BaP①组OD(0.66±0.04),BaP②组OD(0.55±0.04),BaP③组OD(0.35±0.05),均P〈0.01],BaP染毒组间增殖能力差异亦有统计学意义(两两比较,均P〈0.01)};与正常对照组比较,BaP呈浓度依赖性降低EPC的黏附能力{正常对照组[(117.50±17.16)个/200倍镜]显著高于BaP各组[BaP①组(80.00±14.46)个/200倍镜,BaP②组(66.00±9.06)个/200倍镜,BaP③组(49.80±10.72)个/200倍镜,均P〈0.01],BaP染毒组间黏附能力差异亦有统计学意义(两两比较,均P〈0.05)};与正常对照组相比,EPC的迁移能力亦呈BaP浓度依赖性降低{正常对照组[(46.10±4.51)个/400倍镜]显著高于BaP各组[BaP①组(35.50±4.95)个/400倍镜,BaP②组(26.80±4.08)个/400倍镜,BaP③组(19.50±2.84)个/400倍镜,均P〈0.01],BaP染毒组间迁移能力差异亦有统计学意义(两两比较,均P〈0.01)};与正常对照组比较,EPC的成血管能力亦呈BaP浓度依赖性降低{正常对照组[(33.20±3.70)个/100倍镜]显著高于BaP各组[BaP①组(22.00±3.39)个/100倍镜,BaP②组(16.20±2.59)个/100倍镜,BaP③组(10.80±2.39)个/100倍镜,均P〈0.01],BaP染毒组间成血管能力差异亦有统计学意义(两两比较,均P〈0.05)}。同时细胞培养上清液中SOD的活力也呈BaP浓度依赖性地降低{正常对照组[(22.6±2.19)U/ml]高于BaP各组[BaP①组(15.94±1.68)U/ml,BaP②组(12.5±1.58)U/ml,BaP③组(6.9±1.55)U/ml,均P〈0.01],BaP染毒组间SOD活力差异亦有统计学意义(两两比较,均P〈0.01)}。结论 BaP体外诱导显著影响EPC的多种生物学功能,其机制可能与氧化损伤有关。 相似文献
36.
Vasily N. Danilevich Andrey L. Mulyukin Andrey V. Machulin Vladimir V. Sorokin Sergey A. Kozlov 《Journal of biomolecular structure & dynamics》2019,37(4):918-930
Our previous studies demonstrated the formation of structurally diverse DNA-containing microparticles (DNA MPs) in PCR with Mg-pyrophosphate (MgPPi) as the structure-forming component. These DNA MPs were referred to major structural types: microdisks (2D MPs) with nanometer thickness and 3D MPs with sophisticated morphology and constructed from intersecting disks and their segments. Little is known about factors that influence both the morphology and size of DNA MPs, and the present study was aimed at fulfilling this gap. We showed that the addition of Mn2+ cations to PCR mixtures caused the profound changes in MPs morphology, depending on DNA polymerase used (KlenTaq or Taq). Asymmetric PCR with 20-fold decrease in the concentration of one of two primers facilitated the predominant formation of microdisks with unusual structure. The addition of 1 mM Na-pyrophosphate to PCR mixtures with synthesized DNA and subsequent thermal cycling (10–15 cycles) were optimal to produce microdisks or nanometer 3D particles. Using electron microscopy, we studied also the structure of inorganic micro- and nanoparticles from MgPPi, formed during multiple heating and cooling cycles of a mixture of Mg2+ and Na-pyrophosphate in various regimes. Also, we found the conditions to yield planar (Mg·Mn)PPi nanocrystals (diameter ~100 nm and thickness ~10 nm) which efficiently adsorbed exogenous DNA. These inorganic nanoparticles are promising for DNA delivery in transfection studies. Mechanisms to be involved in structural modifications of MPs and perspectives of their practical application are discussed. 相似文献
37.
Hashimoto K Morishige K Sawada K Tahara M Shimizu S Ogata S Sakata M Tasaka K Kimura T 《Biochemical and biophysical research communications》2007,354(2):478-484
We previously reported that alendronate inhibits intraperitoneal dissemination in an in vivo ovarian cancer model. Recently, nitrogen-containing bisphosphonates have been reported to have antiangiogenic activities. In this study, alendronate inhibited human umbilical vein endothelial cell (HUVEC) migration and capillary-like structure formation in vitro. These inhibitory effects were associated with reduced Rho activation and suppression of the formation of actin stress fibers and focal adhesions in HUVECs. Furthermore, the inhibition by alendronate was reversed by geranylgeraniol, which abrogated the inhibition of Rho geranylgeranylation. Next, we examined the effect of alendronate on angiogenesis in disseminated ovarian tumors of athymic immunodeficient mice. Alendronate treatment reduced the intra-tumor neoangiogenesis compared with that in the non-treated mice, although tumor-derived VEGF expression was not altered. In conclusion, the in vivo anti-tumor effect of alendronate might be derived, at least in part, from its direct antiangiogenic effects on intra-tumor endothelial cells by inhibiting Rho geranylgeranylation. 相似文献
38.
Nacev BA Grassi P Dell A Haslam SM Liu JO 《The Journal of biological chemistry》2011,286(51):44045-44056
Itraconazole is a safe and widely used antifungal drug that was recently found to possess potent antiangiogenic activity. Currently, there are four active clinical trials evaluating itraconazole as a cancer therapeutic. Tumor growth is dependent on angiogenesis, which is driven by the secretion of growth factors from the tumor itself. We report here that itraconazole significantly inhibited the binding of vascular endothelial growth factor (VEGF) to VEGF receptor 2 (VEGFR2) and that both VEGFR2 and an immediate downstream substrate, phospholipase C γ1, failed to become activated after VEGF stimulation. These effects were due to a defect in VEGFR2 trafficking, leading to a decrease in cell surface expression, and were associated with the accumulation of immature N-glycans on VEGFR2. Small molecule inducers of lysosomal cholesterol accumulation and mammalian target of rapamycin (mTOR) inhibition, two previously reported itraconazole activities, failed to recapitulate itraconazole's effects on VEGFR2 glycosylation and signaling. Likewise, glycosylation inhibitors did not alter cholesterol trafficking or inhibit mTOR. Repletion of cellular cholesterol levels, which was known to rescue the effects of itraconazole on mTOR and cholesterol trafficking, was also able to restore VEGFR2 glycosylation and signaling. This suggests that the new effects of itraconazole occur in parallel to those previously reported but are downstream of a common target. We also demonstrated that itraconazole globally reduced poly-N-acetyllactosamine and tetra-antennary complex N-glycans in endothelial cells and induced hypoglycosylation of the epidermal growth factor receptor in a renal cell carcinoma line, suggesting that itraconazole's effects extend beyond VEGFR2. 相似文献
39.
《FEBS letters》2014,588(23):4448-4456
Endothelial cells express very low density lipoprotein receptor (VLDLr). Beyond the function as peripheral lipoprotein receptor, other roles of VLDLr in endothelial cells have not been completely unraveled. In the present study, human umbilical vein endothelial cells were subjected to hypoxia, and VLDLr expression, endoplasmic reticulum (ER) stress, and apoptosis were assessed. Hypoxia triggered endothelial ER stress and apoptosis, and induced VLDLr expression. Silencing or stabilization of HIF-1α reduced and enhanced VLDLr expression, respectively. HIF-1α affected vldlr promoter activity by interacting with a hypoxia-responsive element (HRE). Knockdown or overexpression of VLDLr alleviated and exacerbated hypoxia-induced ER stress and apoptosis, respectively. Thus, hypoxia induces VLDLr expression through the interaction of HIF-1α with HRE at the vldlr promoter. VLDLr then mediates ER stress and apoptosis. 相似文献
40.
The present work examined the effect of chronic oral administration of quercetin, a flavonoid antioxidant, on blood glucose, vascular function and oxidative stress in STZ-induced diabetic rats. Male Wistar-Kyoto (WKY) rats were randomized into euglycemic, untreated diabetic, vehicle (1% w/v methylcellulose)-treated diabetic, which served as control, or quercetin (10mgkg(-1) body weight)-treated diabetic groups and treated orally for 6 weeks. Quercetin treatment reduced blood glucose level in diabetic rats. Impaired relaxations to endothelium-dependent vasodilator acetylcholine (ACh) and enhanced vasoconstriction responses to alpha(1)-adrenoceptor agonist phenylephrine (PE) in diabetic rat aortic rings were restored to euglycemic levels by quercetin treatment. Pretreatment with N(omega)-nitro-l-arginine methyl ester (l-NAME, 10microM) or methylene blue (10microM) completely blocked but indomethacin (10microM) did not affect relaxations to ACh in aortic rings from vehicle- or quercetin-treated diabetic rats. PE-induced vasoconstriction with an essentially similar magnitude in vehicle- or quercetin-treated diabetic rat aortic rings pretreated with l-NAME (10microM) plus indomethacin (10microM). Quercetin treatment reduced plasma malonaldehyde (MDA) plus 4-hydroxyalkenals (4-HNE) content as well as increased superoxide dismutase activity and total antioxidant capacity in diabetic rats. From the present study, it can be concluded that quercetin administration to diabetic rats restores vascular function, probably through enhancement in the bioavailability of endothelium-derived nitric oxide coupled to reduced blood glucose level and oxidative stress. 相似文献