首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1504篇
  免费   64篇
  国内免费   5篇
  2023年   4篇
  2022年   12篇
  2021年   19篇
  2020年   16篇
  2019年   33篇
  2018年   36篇
  2017年   18篇
  2016年   32篇
  2015年   51篇
  2014年   121篇
  2013年   124篇
  2012年   93篇
  2011年   108篇
  2010年   79篇
  2009年   97篇
  2008年   92篇
  2007年   87篇
  2006年   110篇
  2005年   80篇
  2004年   96篇
  2003年   65篇
  2002年   42篇
  2001年   13篇
  2000年   15篇
  1999年   13篇
  1998年   12篇
  1997年   11篇
  1996年   3篇
  1995年   14篇
  1994年   9篇
  1993年   5篇
  1992年   8篇
  1991年   5篇
  1990年   7篇
  1989年   4篇
  1988年   4篇
  1987年   2篇
  1986年   5篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1976年   4篇
  1974年   1篇
  1973年   2篇
  1970年   1篇
排序方式: 共有1573条查询结果,搜索用时 15 毫秒
61.
62.
63.
2-Methoxyestradiol, an endogenous metabolite of 17β-estradiol, is known to have antitumor and antiangiogenic actions. The effects of 2-methoxyestradiol on ionic currents were investigated in an endothelial cell line (HUV-EC-C) originally derived from human umbilical vein. In the whole-cell patch-clamp configuration, 2-methoxyestradiol (0.3–30 μm) reversibly suppressed the amplitude of K+ outward currents. The IC 50 value of the 2-methoxyestradiol-induced decrease in outward current was 3 μm. Evans blue (30 μm) or niflumic acid (30 μm), but not diazoxide (30 μm), reversed the 2-methoxyestradiol-induced decrease in outward current. In the inside-out configuration, application of 2-methoxyestradiol (3 μm) to the bath did not modify the single-channel conductance of large-conductance Ca2+-activated K+ (BKCa) channels; however, it did suppress the channel activity. 2-Methoxyestradiol (3 μm) produced a shift in the activation curve of BKCa channels to more positive potentials. Kinetic studies showed that the 2-methoxyestradiol-induced inhibition of BKCa channels is primarily mediated by a decrease in the number of long-lived openings. 2-Methoxyestradiol-induced inhibition of the channel activity was potentiated by membrane stretch. In contrast, neither 17β-estradiol (10 μm) nor estriol (10 μm) affected BKCa channel activity, whereas 2-hydroxyestradiol (10 μm) slightly suppressed it. Under current-clamp condition, 2-methoxyestradiol (10 μm) caused membrane depolarization and Evans blue (30 μm) reversed 2-methoxyestradiol-induced depolarization. The present study provides evidence that 2-methoxyestradiol can suppress the activity of BKCa channels in endothelial cells. These effects of 2-methoxyestradiol on ionic currents may contribute to its effects on functional activity of endothelial cells. Received: 27 November 2000/Revised: 13 April 2001  相似文献   
64.
65.
Vascular proteomics: linking proteomic and metabolomic changes   总被引:2,自引:0,他引:2  
Mayr M  Mayr U  Chung YL  Yin X  Griffiths JR  Xu Q 《Proteomics》2004,4(12):3751-3761
  相似文献   
66.
Endothelial-pericyte interactions in angiogenesis   总被引:29,自引:0,他引:29  
It takes two to make blood vessels—endothelial cells and pericytes. While the endothelial cells are the better characterized of the two, pericytes are now coming into focus as important regulators of angiogenesis and blood vessel function, and as potential drug targets. However, pericytes are still surrounded by much controversy. They are difficult to define, they constitute a heterogeneous population of cells, and their ontogeny is not well understood. They are plastic and have the capacity to differentiate into other mesenchymal cell types, such as smooth muscle cells, fibroblasts and osteoblasts. Recent interest in pericytes also stems from their potential involvement in diseases such as diabetic microangiopathy, tissue fibrosis, cancer, atherosclerosis and Alzheimer's disease. The present review focuses on the role of pericytes in physiological angiogenesis. The currently favored view states that the initial endothelial tubes form without pericyte contact, and that subsequent acquisition of pericyte coverage leads to vessel remodeling, maturation and stabilization. Improved means of identifying and visualizing pericytes now challenge this view and show that high numbers of pericytes invest in actively sprouting and remodeling vessels. Genetic data demonstrate the critical importance of pericytes for vascular morphogenesis and function, and imply specific roles for the cell type in various aspects of angiogenesis.The images were captured using a Leica confocal microscope, the purchase of which was made possible though a generous grant from the IngaBritt and Arne Lundberg's Research Foundation  相似文献   
67.
OxLDL诱发大鼠血管内皮细胞凋亡模型的建立   总被引:1,自引:0,他引:1  
目的 建立OxLDL诱发大鼠血管内皮细胞凋亡的模型。方法 SD大鼠尾静脉注射非氧化的LDL ,2 4h后取主动脉血管内皮细胞铺片 ,采用光学显微镜和荧光显微镜进行形态学观察 ,TUNEL法染色计算凋亡细胞比例。结果 ( 1)静脉注射LDL组观察到明显的凋亡形态学改变 ,对照组未见凋亡内皮细胞 ;( 2 )静脉注射LDL ( 4mg/kg、 6mg/kg、8mg/kg)组凋亡细胞比例分别为 8 10 %、 18 92 %、 2 2 0 3 % ,三组间有非常显著性差异 (P <0 0 1)。结论  ( 1)尾静脉注射LDL后 2 4h可引起血管内皮细胞凋亡 ;( 2 )静脉注射LDL引起大鼠血管内皮细胞凋亡呈剂量依赖性  相似文献   
68.
Bradykinin (BK) acutely increases endothelial nitric oxide (NO) production by activating endothelial NO synthase (eNOS), and this increase is in part correlated with enhanced phosphorylation/dephosphorylation of eNOS by several protein kinases and phosphatases. However, the signaling mechanisms producing this increase are still controversial. In an attempt to delineate the acute effect of BK on endothelial NO production, confluent bovine aortic endothelial cells were incubated with BK, and NO production was measured by NO-specific chemiluminescence. Significant increase in NO levels was detected as early as 1 min after BK treatment, with concomitant increase in the phosphorylation of Ser(1179) (bovine sequence) site of eNOS (eNOS-Ser(1179)). This acute effect of BK on both increases was blocked only by treatment of protein kinase A inhibitor H-89, but not by the inhibitors of calmodulin-dependent kinase II and protein kinase B, suggesting that the rapid increase in NO production by BK is mediated by the PKA-dependent phosphorylation of eNOS-Ser(1179).  相似文献   
69.
ACE inhibition actively promotes cell survival by altering gene expression   总被引:2,自引:0,他引:2  
We tested the effect of ACE inhibition on the survival of bovine retinal (REC) and choroidal (CEC) endothelial cells (EC) in culture. The ACE inhibitor captopril delayed the apoptotic tube collapse of REC on Matrigel for >15 days. Captopril treatment of confluent monolayers (2-8 weeks) followed by slow starvation (2-4 weeks) increased EC viability by approximately 200%. Two-week captopril exposures were sufficient to confer maximal protection. Only vehicle-treated EC demonstrated apoptotic features such as membrane blebbing and DNA laddering. By RT-PCR, the starvation marker p202 was upregulated only in starved cells. In REC, captopril upregulated the pro-survival proteins mortalin-2, uPA, and uPAR while downregulating the anti-growth sprouty-4 and tPA. In CEC, captopril also upregulated tPA and its inhibitor PAI-1. Amiloride (uPA inhibitor) blocked the captopril-induced increase in EC survival, secondary sprouting, and invasion in Matrigel. The pro-survival effects of captopril involve the reprogramming of genes involved in cell survival and immortalization.  相似文献   
70.
We measured angiotensin I-converting enzyme (ACE) activity in a human endothelial cell to characterize the intracellular signal pathways of Klotho. COS-1 cells transfected with naked mouse membrane-form klotho plasmid DNA (pCAGGS-klotho) translated proper Klotho protein. This translated Klotho protein was secreted into the culture medium. Furthermore, ACE activity in human umbilical vein endothelial cells (HUVEC) was upregulated when HUVEC were co-cultured with COS-1 cells that were pre-transfected with pCAGGS-klotho. The conditioned medium from COS-1 cells pre-transfected with pCAGGS-klotho also dose-dependently upregulated ACE in HUVEC. In addition, the conditioned medium induced time- and dose-dependent enhancement of cAMP production in HUVEC. Rp-cAMP, an inhibitor of cAMP-dependent protein kinase A (PKA), inhibited the upregulation of ACE by Klotho protein. Our results suggest that mouse membrane-form Klotho protein acts as a humoral factor to increase ACE activity in HUVEC via a cAMP-PKA-dependent pathway. These findings may provide a new insight into the mechanism of Klotho protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号