首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2754篇
  免费   381篇
  国内免费   284篇
  2024年   16篇
  2023年   89篇
  2022年   87篇
  2021年   154篇
  2020年   150篇
  2019年   144篇
  2018年   118篇
  2017年   127篇
  2016年   120篇
  2015年   129篇
  2014年   179篇
  2013年   168篇
  2012年   159篇
  2011年   137篇
  2010年   100篇
  2009年   177篇
  2008年   148篇
  2007年   139篇
  2006年   157篇
  2005年   122篇
  2004年   95篇
  2003年   64篇
  2002年   69篇
  2001年   78篇
  2000年   43篇
  1999年   67篇
  1998年   46篇
  1997年   43篇
  1996年   41篇
  1995年   47篇
  1994年   21篇
  1993年   20篇
  1992年   23篇
  1991年   20篇
  1990年   16篇
  1989年   8篇
  1988年   15篇
  1987年   17篇
  1986年   10篇
  1985年   13篇
  1984年   9篇
  1983年   1篇
  1982年   9篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   3篇
  1977年   9篇
  1976年   1篇
排序方式: 共有3419条查询结果,搜索用时 62 毫秒
991.
Environments experienced during development have long‐lasting consequences for adult performance and fitness. The “environmental matching” hypothesis predicts that individuals perform best when adult and developmental environments match whereas the “silver spoon” hypothesis expects that fitness is higher in individuals developed under favorable environments regardless of adult environments. Temperature and nutrition are the two most influential determinants of environmental quality, but it remains to be elucidated which of these hypotheses better explains the long‐term effects of thermal and nutritional histories on adult fitness traits. Here we compared how the temperature and nutrition of larval environment would affect adult survivorship and reproductive success in the fruit fly, Drosophila melanogaster. The aspect of nutrition focused on in this study was the dietary protein‐to‐carbohydrate (P:C) ratio. The impact of low developmental and adult temperature was to improve adult survivorship. High P:C diet had a negative effect on adult survivorship when ingested during the adult stage, but had a positive effect when ingested during development. No matter whether adult and developmental environments matched or not, females raised in warm and protein‐enriched environments produced more eggs than those raised in cool and protein‐limiting environments, suggesting the presence of a significant silver spoon effect of larval temperature and nutrition. The effect of larval temperature on adult egg production was weak but persisted across the early adult stage whereas that of larval nutrition was initially strong but diminished rapidly after day 5 posteclosion. Egg production after day 5 was strongly influenced by the P:C ratio of the adult diet, indicating that the diet contributing mainly to reproduction had shifted from larval to adult diet. Our results highlight the importance of thermal and nutritional histories in shaping organismal performance and fitness and also demonstrate how the silver spoon effects of these aspects of environmental histories differ fundamentally in their nature, strength, and persistence.  相似文献   
992.
Many factors contribute to the nonrandom processes of extinctions and invasions that are changing the structure of ecological communities worldwide. These factors include the attributes of the species, their abiotic environment, and the interactions and feedbacks between them. The relative importance of these factors has been difficult to quantify. We used nested subset theory and a novel permutation‐based extension of gradient analysis to disentangle the direct and indirect pathways by which these factors affect the metacommunity structure of freshwater fishes inhabiting the streams tributary to the San Francisco Bay. Our analyses provide quantitative measures of how species and stream attributes may influence extinction vulnerability and invasion risk, highlight the need for considering the multiple interacting drivers of community change concurrently, and indicate that the ongoing disassembly and assembly of Bay Area freshwater fish communities are not fully symmetric processes. Fish communities are being taken apart and put back together in only partially analogous trajectories of extinction and invasion for which no single explanatory hypothesis is sufficient. Our study thereby contributes to the forecasting of continued community change and its effects on the functioning of freshwater ecosystems.  相似文献   
993.
Hempseed is rich in polyunsaturated fatty acids (PUFAs), which have potential as therapeutic compounds for the treatment of neurodegenerative and cardiovascular disease. However, the effect of hempseed meal (HSM) intake on the animal models of these diseases has yet to be elucidated. In this study, we assessed the effects of the intake of HSM and PUFAs on oxidative stress, cytotoxicity and neurological phenotypes, and cholesterol uptake, using Drosophila models. HSM intake was shown to reduce H2O2 toxicity markedly, indicating that HSM exerts a profound antioxidant effect. Meanwhile, intake of HSM, as well as linoleic or linolenic acids (major PUFA components of HSM) was shown to ameliorate Aβ42-induced eye degeneration, thus suggesting that these compounds exert a protective effect against Aβ42 cytotoxicity. On the contrary, locomotion and longevity in the Parkinson’s disease model and eye degeneration in the Huntington’s disease model were unaffected by HSM feeding. Additionally, intake of HSM or linoleic acid was shown to reduce cholesterol uptake significantly. Moreover, linoleic acid intake has been shown to delay pupariation, and cholesterol feeding rescued the linoleic acid-induced larval growth delay, thereby indicating that linoleic acid acts antagonistically with cholesterol during larval growth. In conclusion, our results indicate that HSM and linoleic acid exert inhibitory effects on both Aβ42 cytotoxicity and cholesterol uptake, and are potential candidates for the treatment of Alzheimer’s disease and cardiovascular disease.  相似文献   
994.
It has been suggested that plant physical and chemical traits vary considerably in space and time. Hence, leaf‐mining insects may adjust their oviposition in response to leaf attributes representing high quality. Moreover, herbivorous insects can modify leaf morphology by acting as stressors, increasing, for example, fluctuating asymmetry (FA) levels. Here, we investigate oviposition preference in Agnippe sp.2, a leaf‐mining moth of Erythroxylum tortuosum, in relation to differences in leaf nutritional quality (i.e. levels of water, nitrogen and tannin content), leaf area (i.e. quantity of resource hypothesis) and FA. We also verify whether temporal variation in plant nutritional quality emerges as an alternative hypothesis to explain oviposition distribution in time, and whether this leaf miner is a stress‐causing agent, increasing FA during larval development. Mined leaves and leaves with and without eggs were periodically collected from plants located in a Cerrado fragment in Brazil. In the laboratory, leaf traits were assessed (using image analysis software) and quantified (biochemical analysis) according to the aims previously determined. Oviposition probability did not change in relation to variations in nitrogen, tannins and FA of leaves. However, leaf‐miner females preferred to oviposit on leaves having large areas and low water contents. It was also verified that new leaves of E. tortuosum, which carried most leaf‐miner eggs, presented significantly lower tannins and greater levels of nitrogen and water than old leaves. The oviposition choice exhibited by leaf miners was found to be non‐random because they appear to use resource quantity and water content as cues as where to lay their eggs. The temporal variation of plant nutritional quality is likely to influence the time of leaf‐miner oviposition; and leaf FA was not increased during larval feeding, suggesting that these herbivores do not cause variations in FA levels.  相似文献   
995.
Linking community and ecosystem dynamics through spatial ecology   总被引:1,自引:0,他引:1  
Classical approaches to food webs focus on patterns and processes occurring at the community level rather than at the broader ecosystem scale, and often ignore spatial aspects of the dynamics. However, recent research suggests that spatial processes influence both food web and ecosystem dynamics, and has led to the idea of 'metaecosystems'. However, these processes have been tackled separately by 'food web metacommunity' ecology, which focuses on the movement of traits, and 'landscape ecosystem' ecology, which focuses on the movement of materials among ecosystems. Here, we argue that this conceptual gap must be bridged to fully understand ecosystem dynamics because many natural cases demonstrate the existence of interactions between the movements of traits and materials. This unification of concepts can be achieved under the metaecosystem framework, and we present two models that highlight how this framework yields novel insights. We then discuss patches, limiting factors and spatial explicitness as key issues to advance metaecosystem theory. We point out future avenues for research on metaecosystem theory and their potential for application to biological conservation.  相似文献   
996.
Hill GE 《Ecology letters》2011,14(7):625-634
Condition is a nearly ubiquitous term in the behavioural, physiological and evolutionary ecology literature; however, existing definitions are incomplete or ambiguous. This poor conceptualization has led to confusion regarding what is being signalled by condition-dependent traits and how to interpret links between ornamentation and individual characteristics such as nutrient reserves, oxidative state and immunocompetence. I propose that the combined effects of the somatic state, epigenetic state and genotype of an organism determine condition. I define condition as the relative capacity to maintain optimal functionality of vital systems within the body. A condition-dependent trait is a conspicuous feature of an organism that enhances perception of condition. Ornament expression can link to system functionality in at least four ways: (1) resources are traded off between operation of physiological pathways and production of ornaments; (2) a regulatory agent necessary for ornament expression depresses a vital physiological process; (3) ornament production requires a product of a vital physiological process; and (4) pathways are shared between ornament production and vital physiological processes. If the honesty of ornamental traits derives from connections to vital cellular processes then there is no need to invoke a fitness cost of ornamentation to insure signal honesty.  相似文献   
997.
The spectacular diversity in sexually selected traits among animal taxa has inspired the hypothesis that divergent sexual selection can drive speciation. Unfortunately, speciation biologists often consider sexual selection in isolation from natural selection, even though sexually selected traits evolve in an ecological context: both preferences and traits are often subject to natural selection. Conversely, while behavioural ecologists may address ecological effects on sexual communication, they rarely measure the consequences for population divergence. Herein, we review the empirical literature addressing the mechanisms by which natural selection and sexual selection can interact during speciation. We find that convincing evidence for any of these scenarios is thin. However, the available data strongly support various diversifying effects that emerge from interactions between sexual selection and environmental heterogeneity. We suggest that evaluating the evolutionary consequences of these effects requires a better integration of behavioural, ecological and evolutionary research.  相似文献   
998.
Venation networks and the origin of the leaf economics spectrum   总被引:1,自引:0,他引:1  
The leaf economics spectrum describes biome-invariant scaling functions for leaf functional traits that relate to global primary productivity and nutrient cycling. Here, we develop a comprehensive framework for the origin of this leaf economics spectrum based on venation-mediated economic strategies. We define a standardized set of traits - density, distance and loopiness - that provides a common language for the study of venation. We develop a novel quantitative model that uses these venation traits to model leaf-level physiology, and show that selection to optimize the venation network predicts the mean global trait-trait scaling relationships across 2548 species. Furthermore, using empirical venation data for 25 plant species, we test our model by predicting four key leaf functional traits related to leaf economics: net carbon assimilation rate, life span, leaf mass per area ratio and nitrogen content. Together, these results indicate that selection on venation geometry is a fundamental basis for understanding the diversity of leaf form and function, and the carbon balance of leaves. The model and associated predictions have broad implications for integrating venation network geometry with pattern and process in ecophysiology, ecology and palaeobotany.  相似文献   
999.
Dietary restriction (DR), one of the most robust life-extending manipulations, is usually associated with reduced adiposity. This reduction is hypothesized to be important in the life-extending effect of DR, because excess adiposity is associated with metabolic and age-related disease. Previously, we described remarkable variation in the lifespan response of 41 recombinant inbred strains of mice to DR, ranging from life extension to life shortening. Here, we used this variation to determine the relationship of lifespan modulation under DR to fat loss. Across strains, DR life extension correlated inversely with fat reduction, measured at midlife (males, r= -0.41, P<0.05, n=38 strains; females, r= -0.63, P<0.001, n=33 strains) and later ages. Thus, strains with the least reduction in fat were more likely to show life extension, and those with the greatest reduction were more likely to have shortened lifespan. We identified two significant quantitative trait loci (QTLs) affecting fat mass under DR in males but none for lifespan, precluding the confirmation of these loci as coordinate modulators of adiposity and longevity. Our data also provide evidence for a QTL previously shown to affect fuel efficiency under DR. In summary, the data do not support an important role for fat reduction in life extension by DR. They suggest instead that factors associated with maintaining adiposity are important for survival and life extension under DR.  相似文献   
1000.
提出了基于分子标记基因型信息来自BC_1F_1母体植株,胚乳性状表型值来自BC_1F_(1:2)单粒种子胚乳的试验设计的胚乳QTL定位的区间作图方法.同时,用计算机全面模拟以验证该模型的可行性,模拟结果表明,只要群体足够大,该模型能有效地进行胚乳性状QTL定位并能估计出胚乳QTL的各种遗传效应和母体效应.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号