首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4308篇
  免费   493篇
  国内免费   943篇
  2024年   15篇
  2023年   97篇
  2022年   85篇
  2021年   132篇
  2020年   210篇
  2019年   184篇
  2018年   186篇
  2017年   195篇
  2016年   219篇
  2015年   181篇
  2014年   205篇
  2013年   230篇
  2012年   177篇
  2011年   250篇
  2010年   166篇
  2009年   239篇
  2008年   253篇
  2007年   263篇
  2006年   215篇
  2005年   214篇
  2004年   155篇
  2003年   184篇
  2002年   161篇
  2001年   133篇
  2000年   147篇
  1999年   116篇
  1998年   92篇
  1997年   98篇
  1996年   83篇
  1995年   87篇
  1994年   73篇
  1993年   81篇
  1992年   82篇
  1991年   59篇
  1990年   65篇
  1989年   43篇
  1988年   47篇
  1987年   40篇
  1986年   34篇
  1985年   43篇
  1984年   32篇
  1983年   31篇
  1982年   32篇
  1981年   16篇
  1980年   23篇
  1979年   19篇
  1978年   10篇
  1977年   12篇
  1976年   11篇
  1973年   6篇
排序方式: 共有5744条查询结果,搜索用时 15 毫秒
151.
Calcium sulfoaluminate‐based cements (CSA) are proposed as a cement alternative with a low carbon footprint. The nature of CSA makes the manufacturing process to require lower temperature, less fuel, and less calcite. However, it requires aluminum oxide, Al2O3, which would be originated from bauxite and bauxite‐derived wastes, and sulfur, coming from calcium sulfate or elemental sulfur. An eco‐efficiency assessment of CSA cements, benchmarked against the conventional Portland cement, has been performed following the principles of ISO 14045 on eco‐efficiency for a total of 240 CSA clinker production scenarios. The eco‐efficiency indicator relates an environmental indicator with a product system value indicator, and it is calculated for each of the studied parameters: bauxite geographical origin, the fuel used for clinkering, the source of sulfur, and the composition of the clinker. Eco‐efficiency results show a strong dependence on the origin of bauxite, while other parameters, as the fuel used, its content in sulfur, or the supply of other raw materials, are of less importance. The most eco‐efficient solutions are those with certain closeness to bauxite sources. To achieve global solutions, that is, cement‐making based on CSA independently of the origin of the raw materials, the amount of bauxite needs to be minimized and CSA composition restricted.  相似文献   
152.
Optimising phosphor screens in dose detectors or imaging sensor designs is a cumbersome and time- consuming work normally involving specialised measuring equipment and advanced modelling. It is known that crucial optical parameters of the same phosphor may vary within a wide range of values. The aim of this work was to experimentally assess a simple previously published model where the case specific optical parameters (scattering and absorption) are instead represented by a fixed, single parameter, the light extinction factor, ξ. The term extrinsic efficiency, N, of a phosphor is also introduced, differing from the common denotation “absolute efficiency”, after noting that unknown factors (such as temperature dependence) can have an influence during efficiency estimations and hence difficult to claim absoluteness. N is expressed as the ratio of light energy emitted per unit area at the phosphor surface to incident x-ray energy fluence. By focusing on ratios and relative changes in this study, readily available instruments in a Medical Physics Department (i.e. a photometer) could be used.The varying relative extrinsic efficiency for an extended range of particle sizes (7.5 and 25 µm) and layer thicknesses (220 to 830 µm) were calculated in the model from the input parameters: the mean particle size of the phosphor, the layer thickness, the light extinction factor and the calculated energy imparted to the layer. In-house manufactured screens (Gd2O2S:Tb) were used for better control of design parameters. The model provided good qualitative agreement to experiment with quantitative deviations in relative extrinsic efficiency within approximately 2%.  相似文献   
153.
《Journal of Asia》2020,23(2):310-314
Parthenium hysterophorus L. (Asteraceae) is a toxic weed of agricultural farms, pastures and wastelands with a pan-tropical distribution. The weed causes a reduction in crop production of agricultural fields and severe health problems in humans. The Mexican beetle, Zygogramma bicolorata Pallister (Coleoptera: Chrysomelidae) is among the most promising candidates for the weed biocontrol. However, no previous study has evaluated assimilation of nutrients in this beetle. In the present study, feeding attributes and assimilation of nutrients by larvae of Z. bicolorata were assessed on the weed. Results revealed that the first larval instars of Z. bicolorata exhibited lowest consumption rates, and accumulated minimum concentrations of glucose, proteins and triglycerides in their body. They showed compensatory feeding, and displayed highest food utilization efficiencies and developmental rates. In contrast, the fourth larval instars exhibited higher food consumption rates and conversion efficiencies, but displayed lowest developmental rates. Accumulation of food reserves was also recorded maximum for the fourth larval instars. Overall, the findings may aid current mass-rearing efforts for Z. bicolorata in laboratories, but field trials are still needed to strengthen the present findings.  相似文献   
154.
The efficiency of protected areas (PAs) has often been questioned due to global decline of biodiversity. Invertebrates, especially insects, have been historically underrepresented in conservation studies. Our study focuses on hoverflies, an important group of insect pollinators and proven to be good bioindicators. Research was focused in Serbia, one of Europe's hotspots of hoverfly diversity, with a long tradition of hoverfly research, which provided sufficient information for achieving our aims: identifying areas of high hoverfly diversity, evaluating the efficiency of PAs and prime hoverfly areas (PHAs) in the conservation of hoverflies, determining how well they cover the distribution of hoverfly species, especially those of conservation concern, and testing the importance of the size of the area for conservation of hoverfly diversity. We applied weighting of the species to help stress the importance of species of conservation concern. The results indicated that PHAs cover the areas with high hoverfly diversity better than PA networks, especially when it comes to species of conservation concern. Generalized linear model results showed that the area size was a significant predictor of number of species in both PA and PHA. This indicates that area size is key when designating new areas important for conservation, but there are also other factors that need to be taken into account, such as habitat quality or suitability. Studies like this are useful in aiding designation of new areas important for conservation of certain species and in identifying sampling gaps, which could potentially aim future research in that direction.  相似文献   
155.
Sea water temperature affects all biological and ecological processes that ultimately impact ecosystem functioning. In this study, we examine the influence of temperature on global biomass transfers from marine secondary production to fish stocks. By combining fisheries catches in all coastal ocean areas and life‐history traits of exploited marine species, we provide global estimates of two trophic transfer parameters which determine biomass flows in coastal marine food web: the trophic transfer efficiency (TTE) and the biomass residence time (BRT) in the food web. We find that biomass transfers in tropical ecosystems are less efficient and faster than in areas with cooler waters. In contrast, biomass transfers through the food web became faster and more efficient between 1950 and 2010. Using simulated changes in sea water temperature from three Earth system models, we project that the mean TTE in coastal waters would decrease from 7.7% to 7.2% between 2010 and 2100 under the ‘no effective mitigation’ representative concentration pathway (RCP8.5), while BRT between trophic levels 2 and 4 is projected to decrease from 2.7 to 2.3 years on average. Beyond the global trends, we show that the TTEs and BRTs may vary substantially among ecosystem types and that the polar ecosystems may be the most impacted ecosystems. The detected and projected changes in mean TTE and BRT will undermine food web functioning. Our study provides quantitative understanding of temperature effects on trophodynamic of marine ecosystems under climate change.  相似文献   
156.
Two simplifying hypotheses have been proposed for whole‐plant respiration. One links respiration to photosynthesis; the other to biomass. Using a first‐principles carbon balance model with a prescribed live woody biomass turnover, applied at a forest research site where multidecadal measurements are available for comparison, we show that if turnover is fast the accumulation of respiring biomass is low and respiration depends primarily on photosynthesis; while if turnover is slow the accumulation of respiring biomass is high and respiration depends primarily on biomass. But the first scenario is inconsistent with evidence for substantial carry‐over of fixed carbon between years, while the second implies far too great an increase in respiration during stand development—leading to depleted carbohydrate reserves and an unrealistically high mortality risk. These two mutually incompatible hypotheses are thus both incorrect. Respiration is not linearly related either to photosynthesis or to biomass, but it is more strongly controlled by recent photosynthates (and reserve availability) than by total biomass.  相似文献   
157.
Photorespiratory metabolism is essential for plants to maintain functional photosynthesis in an oxygen‐containing environment. Because the oxygenation reaction of Rubisco is followed by the loss of previously fixed carbon, photorespiration is often considered a wasteful process and considerable efforts are aimed at minimizing the negative impact of photorespiration on the plant’s carbon uptake. However, the photorespiratory pathway has also many positive aspects, as it is well integrated within other metabolic processes, such as nitrogen assimilation and C1 metabolism, and it is important for maintaining the redox balance of the plant. The overall effect of photorespiratory carbon loss on the net CO2 fixation of the plant is also strongly influenced by the physiology of the leaf related to CO2 diffusion. This review outlines the distinction between Rubisco oxygenation and photorespiratory CO2 release as a basis to evaluate the costs and benefits of photorespiration.  相似文献   
158.
干旱区植物的水分利用效率对植物的分布及水分利用状况具有重要意义。基于不同地下水埋深条件下沙漠腹地绿洲优势种胡杨和柽柳叶片δ13C值,分析了胡杨和柽柳的水分利用效率对不同地下水埋深的响应。结果表明: 随着地下水埋深由2.1 m增加到4.3 m,柽柳叶片的δ13C值先略有增加后处于较为稳定状态,柽柳采取较为稳定的水分利用效率适应干旱环境;胡杨叶片的δ13C值呈现先略有减小后增加的趋势,胡杨通过提高水分利用效率的策略适应干旱胁迫。同一地下水埋深条件下柽柳叶片的δ13C值高于胡杨叶片,表明柽柳的水分利用效率高于胡杨。  相似文献   
159.
刘阳  裴韬  杜娟  邓名荣  朱红惠 《生物资源》2020,42(5):576-584
自然界蕴含大量未/难培养微生物,分离这些微生物对理论研究和资源开发具有重要意义。本研究使用高压灭菌和过滤除菌方式制备培养基,采用稀释涂布方法,从红树林灰泥样品中分离获得123株细菌,通过16S rRNA基因序列分析对其进行鉴定,进而探究培养基灭菌方式对细菌分离效果的影响。结果表明:过滤除菌培养基生长的单菌落数目(339±82)个显著多于高压灭菌培养基生长的单菌落数目(179±65)个;两种培养基分离细菌的群落结构在门、科和属分类水平上总体相似,但优势类群的数目和少数类群存在差异;过滤除菌培养基分离细菌的Shannon Wiener’s指数、均匀度、新种率、基因多样性均高于高压灭菌培养基,而其与近缘模式菌株相似度的平均值和中位数则低于高压灭菌培养基。因此,过滤除菌培养基分离获得细菌的多样性、均匀性和新颖性均高于高压灭菌培养基。本研究首次探究培养基灭菌方式对细菌分离效果的影响,具有更高分离效率的过滤除菌培养基为未/难培养微生物菌株资源获取提供了借鉴。  相似文献   
160.
Background and AimsLeaf functional traits are strongly tied to growth strategies and ecological processes across species, but few efforts have linked intraspecific trait variation to performance across ontogenetic and environmental gradients. Plants are believed to shift towards more resource-conservative traits in stressful environments and as they age. However, uncertainty as to how intraspecific trait variation aligns with plant age and performance in the context of environmental variation may limit our ability to use traits to infer ecological processes at larger scales.MethodsWe measured leaf physiological and morphological traits, canopy volume and flowering effort for Artemisia californica (California sagebrush), a dominant shrub species in the coastal sage scrub community, under conditions of 50, 100 and 150 % ambient precipitation for 3 years.Key ResultsPlant age was a stronger driver of variation in traits and performance than water availability. Older plants demonstrated trait values consistent with a more conservative resource-use strategy, and trait values were less sensitive to drought. Several trait correlations were consistent across years and treatments; for example, plants with high photosynthetic rates tended to have high stomatal conductance, leaf nitrogen concentration and light-use efficiency. However, the trade-off between leaf construction and leaf nitrogen evident in older plants was absent for first-year plants. While few traits correlated with plant growth and flowering effort, we observed a positive correlation between leaf mass per area and performance in some groups of older plants.ConclusionsOverall, our results suggest that trait sensitivity to the environment is most visible during earlier stages of development, after which intraspecific trait variation and relationships may stabilize. While plant age plays a major role in intraspecific trait variation and sensitivity (and thus trait-based inferences), the direct influence of environment on growth and fecundity is just as critical to predicting plant performance in a changing environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号