首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   7篇
  2022年   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2015年   5篇
  2014年   1篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   1篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1992年   1篇
  1989年   1篇
  1984年   1篇
排序方式: 共有37条查询结果,搜索用时 171 毫秒
31.
The relationship of environmental and soil-nutrient variables with the floristic composition of Empetrum rubrum heathlands and related communities from northern Tierra del Fuego were studied by means of ordination techniques. A floristic gradient was found which had its axis of major variation closely related to a gradient in soil trophic status. Increases in the densities of Empetrum and other cushion plants (Bolax gummifera, Azorella lycopodioides, Pernettya pumila) along the floristic gradient were: (a) associated with a lower number of species and total cover, and greater soil erosion; (b) positively correlated with the C/N ratio and aluminium content in the soil; and (c) negatively correlated with pH, calcium content and base saturation.Climate, lithology, habitat exposure, and the history of human activity would be key factors in developing the oligotrophic conditions that favoured the establishment of different Empetrum heathlands.  相似文献   
32.
Climate change scenarios predict an increased frequency of extreme climatic events. In Arctic regions, one of the most profound of these are extreme and sudden winter warming events in which temperatures increase rapidly to above freezing, often causing snow melt across whole landscapes and exposure of ecosystems to warm temperatures. Following warming, vegetation and soils no longer insulated below snow are then exposed to rapidly returning extreme cold. Using a new experimental facility established in sub‐Arctic dwarf shrub heathland in northern Sweden, we simulated an extreme winter warming event in the field and report findings on growth, phenology and reproduction during the subsequent growing season. A 1‐week long extreme winter warming event was simulated in early March using infrared heating lamps run with or without soil warming cables. Both single short events delayed bud development of Vaccinium myrtillus by up to 3 weeks in the following spring (June) and reduced flower production by more than 80%: this also led to a near‐complete elimination of berry production in mid‐summer. Empetrum hermaphroditum also showed delayed bud development. In contrast, Vaccinium vitis‐idaea showed no delay in bud development, but instead appeared to produce a greater number of actively growing vegetative buds within plots warmed by heating lamps only. Again, there was evidence of reduced flowering and berry production in this species. While bud break was delayed, growing season measurements of growth and photosynthesis did not reveal a differential response in the warmed plants for any of the species. These results demonstrate that a single, short, extreme winter warming event can have considerable impact on bud production, phenology and reproductive effort of dominant plant species within sub‐Arctic dwarf shrub heathland. Furthermore, large interspecific differences in sensitivity are seen. These findings are of considerable concern, because they suggest that repeated events may potentially impact on the biodiversity and productivity of these systems should these extreme events increase in frequency as a result of global change. Although climate change may lengthen the growing season by earlier spring snow melt, there is a profound danger for these high‐latitude ecosystems if extreme, short‐lived warming in winter exposes plants to initial warm temperatures, but then extreme cold for the rest of the winter. Work is ongoing to determine the longer term and wider impacts of these events.  相似文献   
33.
Climate warming increases nitrogen (N) mineralization in superficial soil layers (the dominant rooting zone) of subarctic peatlands. Thawing and subsequent mineralization of permafrost increases plant‐available N around the thaw‐front. Because plant production in these peatlands is N‐limited, such changes may substantially affect net primary production and species composition. We aimed to identify the potential impact of increased N‐availability due to permafrost thawing on subarctic peatland plant production and species performance, relative to the impact of increased N‐availability in superficial organic layers. Therefore, we investigated whether plant roots are present at the thaw‐front (45 cm depth) and whether N‐uptake (15N‐tracer) at the thaw‐front occurs during maximum thaw‐depth, coinciding with the end of the growing season. Moreover, we performed a unique 3‐year belowground fertilization experiment with fully factorial combinations of deep‐ (thaw‐front) and shallow‐fertilization (10 cm depth) and controls. We found that certain species are present with roots at the thaw‐front (Rubus chamaemorus) and have the capacity (R. chamaemorus, Eriophorum vaginatum) for N‐uptake from the thaw‐front between autumn and spring when aboveground tissue is largely senescent. In response to 3‐year shallow‐belowground fertilization (S) both shallow‐ (Empetrum hermaphroditum) and deep‐rooting species increased aboveground biomass and N‐content, but only deep‐rooting species responded positively to enhanced nutrient supply at the thaw‐front (D). Moreover, the effects of shallow‐fertilization and thaw‐front fertilization on aboveground biomass production of the deep‐rooting species were similar in magnitude (S: 71%; D: 111% increase compared to control) and additive (S + D: 181% increase). Our results show that plant‐available N released from thawing permafrost can form a thus far overlooked additional N‐source for deep‐rooting subarctic plant species and increase their biomass production beyond the already established impact of warming‐driven enhanced shallow N‐mineralization. This may result in shifts in plant community composition and may partially counteract the increased carbon losses from thawing permafrost.  相似文献   
34.
35.
In the course of continuing studies on the occurrence and chemical composition of lipophilic exudates on plant surfaces, the leaves of Empetrum nigrum have been studied. They were found to produce a considerable amount of lipophilic material which mostly consists of phenolic compounds. We here report the identification of two dioxygenated chalcones, three dioxygenated dihydrochalcones, and two dihydrophenanthrene derivatives. Exept for one chalcone, all these compounds were found for the first time as natural products. The upper and lower epidermis of the rolled hypostomatous leaves bear glandular trichomes. By flavonoid specific staining it can be shown that these natural products are accumulated within the capitate glandular cells.  相似文献   
36.
37.
Questions: What are the effects of repeated disturbance and N‐fertilization on plant community structure in a mountain birch forest? What is the role of enhanced nutrient availability in recovery of understorey vegetation after repeated disturbance? How are responses of soil micro‐organisms to disturbance and N‐fertilization reflected in nutrient allocation patterns and recovery of understorey vegetation after disturbance? Location: Subarctic mountain birch forest, Finland. Methods: We conducted a fully factorial experiment with annual treatments of disturbance (two levels) and N‐fertilization (four levels) during 1998–2002. We monitored treatment effects on above‐ground plant biomass, plant community structure and plant and soil nutrient concentrations. Results: Both disturbance and N‐fertilization increased the relative biomass of graminoids. The increase of relative biomass of graminoids in the disturbance treatment was over twice that of the highest N‐fertilization level, and N‐fertilization further increased their relative biomass after disturbance. As repeated disturbance broke the dominance of evergreen dwarf shrubs, it resulted in a situation where deciduous species, graminoids and herbs dominated the plant community. Although relative biomass of deciduous dwarf shrubs declined with N‐fertilization, it did not cause a shift in plant community structure, as evergreen dwarf shrubs remained dominant. Both disturbance and N‐fertilization increased the N concentration in vascular plants, whereas microbial biomass N and C were not affected by the treatments. Concentrations of NH4+, dissolved organic N (DON) and dissolved organic C (DOC) increased in the soil after N‐fertilization, whereas concentrations of NH4+ and DON decreased after disturbance. Conclusions: Disturbances caused by e.g. humans or herbivores contribute more to changes in the understorey vegetation structure than increased levels of N in subarctic vegetation. Fertilization accelerated the recovery potential after repeated disturbance in graminoids. Microbial activities did not limit plant growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号