首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3582篇
  免费   296篇
  国内免费   288篇
  2024年   9篇
  2023年   80篇
  2022年   67篇
  2021年   115篇
  2020年   122篇
  2019年   148篇
  2018年   127篇
  2017年   129篇
  2016年   127篇
  2015年   142篇
  2014年   224篇
  2013年   232篇
  2012年   158篇
  2011年   185篇
  2010年   154篇
  2009年   207篇
  2008年   185篇
  2007年   211篇
  2006年   224篇
  2005年   186篇
  2004年   159篇
  2003年   104篇
  2002年   92篇
  2001年   77篇
  2000年   67篇
  1999年   75篇
  1998年   47篇
  1997年   34篇
  1996年   38篇
  1995年   39篇
  1994年   38篇
  1993年   37篇
  1992年   33篇
  1991年   42篇
  1990年   28篇
  1989年   22篇
  1988年   19篇
  1987年   20篇
  1986年   23篇
  1985年   24篇
  1984年   22篇
  1983年   3篇
  1982年   11篇
  1981年   17篇
  1980年   14篇
  1979年   18篇
  1978年   11篇
  1977年   7篇
  1976年   6篇
  1973年   4篇
排序方式: 共有4166条查询结果,搜索用时 906 毫秒
41.
The contribution of agriculture to the sustainable development goals requires climate-smart and profitable farm innovations. Increasing the ammonia fertilizer applications to meet the global food demands results in high agricultural costs, environmental quality deterioration, and global warming, without a significant increase in crop yield. Here, we reported that a third microbial ammonia oxidation process, complete ammonia oxidation (comammox), is contributing to a significant ammonia fertilizer loss (41.9 ± 4.8%) at the rate of 3.53 ± 0.55 mg N kg−1 day−1 in agricultural soils around the world. The contribution of comammox to ammonia fertilizer loss, occurring mainly in surface agricultural soil profiles (0–0.2 m), was equivalent to that of bacterial ammonia oxidation (48.6 ± 4.5%); both processes were significantly more important than archaeal ammonia oxidation (9.5 ± 3.6%). In contrast, comammox produced less N2O (0.98 ± 0.44 μg N kg−1 day−1, 11.7 ± 3.1%), comparable to that produced by archaeal ammonia oxidation (16.4 ± 4.4%) but significantly lower than that of bacterial ammonia oxidation (72.0 ± 5.1%). The efficiency of ammonia conversion to N2O by comammox (0.02 ± 0.01%) was evidently lower than that of bacterial (0.24 ± 0.06%) and archaeal (0.16 ± 0.04%) ammonia oxidation. The comammox rate increased with increasing soil pH values, which is the only physicochemical characteristic that significantly influenced both comammox bacterial abundance and rates. Ammonia fertilizer loss, dominated by comammox and bacterial ammonia oxidation, was more intense in soils with pH >6.5 than in soils with pH <6.5. Our results revealed that comammox plays a vital role in ammonia fertilizer loss and sustainable development in agroecosystems that have been previously overlooked for a long term.  相似文献   
42.
An embryonic stem cell line was established from SV129 mouse blastocysts and used to generate chimeric mice by injection into OF1 blastocysts; 18 out of the 30 resulting offspring appeared chimeric as judged from their coat color patterns, and 3 of the 13 males proved to be germ-line chimeras as they transmitted the SV129 agouti phenotype to all or part of their offspring. The degree of chimerism of these males was evaluated for different tissues using polymorphic microsatellite markers amplified by the polymerase chain reaction. It was shown that these new markers can be effectively used to quantitatively estimate levels of chimerism. The CKMM (creatine kinase, muscle) microsatellite system was used to distinguish the SV129 from the OF1 genotype. In all performed tests, the correlation between DNA ratio and signal ratio, expressed as a base 10 logarithm, was shown to exceed or equal 0.98 for known DNA ratios (SV129/OF1) ranging from 1/99 to 99/1. Linear calibration methods were used to predict the % SV129 DNA of a test sample based on the obtained signal ratio. The accuracy of the prediction was evaluated by performing repeated measurements. Differences among three repeated estimates ranged from 2 to 17% for a given sample. Microsatellite systems should be very useful to monitor chimerism involving strains that can not be discerned with coat color or biochemical markers. This will be particularly important when ES methodology becomes available in species other than mice. © 1993 Wiley-Liss, Inc.  相似文献   
43.
Synopsis Reproductive biology of the guitarfish,Rhinobatos hynnicephalus, from Xiamen coastal waters is described. Males have two functional testes. Spermatogenic cells in different seminiferous follicles are at different developmental stages while those in the same follicle are at the same stage. The development of claspers suggests that males mature at 380–400 mm TL. Females mature at 390–440mm TL. Both ovaries are functional. The first generation of ovarian eggs reach mature size when 22–24mm in diameter in April or May. The subsequent crop of eggs is ready for ovulation when the intrauterine embryos reach full term. The guitarfish is aplacentally viviparous. Longitudinal folds were observed on the internal wall of the uterus. Gestation takes one year and parturition takes place in June or July. Fecundity ranges from 2 to 9, with the large females usually being more fecund. Of 29 embryos ranging from 52–157mm TL, there were 15 females and 14 males indicating an embryonic sex ratio 1:1.  相似文献   
44.

Aim

Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe.

Location

Global.

Time period

Present.

Major taxa studied

Birds, mammals and amphibians.

Methods

Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a “species–energy model” by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in “wilderness” areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists.

Results

Species–energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R2-values: 0.79–0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57).

Main conclusions

Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species–area relationships to improve predictions of land-use-driven biodiversity loss.  相似文献   
45.
Global food security is one of the utmost essential challenges in the 21st century in providing enough food for the growing population while coping with the already stressed environment. High temperature (HT) is one of the main factors affecting plant growth, development and reproduction and causes male sterility in plants. In male reproductive tissues, metabolic changes induced by HT involve carbohydrates, lipids, hormones, epigenetics and reactive oxygen species, leading to male sterility and ultimately reducing yield. Understanding the mechanism and genes involved in these pathways during the HT stress response will provide a new path to improve crops by using molecular breeding and biotechnological approaches. Moreover, this review provides insight into male sterility and integrates this with suggested strategies to enhance crop tolerance under HT stress conditions at the reproductive stage.  相似文献   
46.
In a search for functions of transforming growth factor-β during early embryonic development we used two different experimental approaches. In the first we made use of embryonic stem (ES) cells. ES cells in culture differentiate to derivatives of all three germ layers and mimic some aspects of organogenesis when grown as aggregates in suspension to form embryoid bodies. Differentiation procedes further when the embryold bodies attach to suitable substrates. Muscle and neuronal cells are among the most readily identified cell types then formed. We examined the effect of all-trans retinoic acid (RA) and members of the transforming growth factor-β family(TGF-βl, TGF-β2) under these conditions in an assay where single aggregates formed in hanging microdrops in medium supplemented with serum depleted of lipophilic substances which would include retinoids. Endoderm-like cells formed under all conditions tested. RA at concentrations of 108 M and 107 M induced the formation of neurons but in the absence of RA or at concentrations up to 10?9 M, neurons were not observed. Instead, beating muscle formed in about one-third of the plated aggregates; this was greatly reduced when RA concentrations increased above 10?9 M. Immunofluorescent staining for muscle specific myosin showed that two muscle cell types could be distinguished: elongated, non-contractile myoblasts and mononucleate flat cells. The mononucleate flat cells appeared to correspond with rhythmically contracting muscle. The number of non-contractile myoblasts increased 3-fold over controls in the presence of 10?9 M RA. TGF-βs increased the number of contractile and non-contractile muscle cells by a factor 3 to 7 over controls, depending on the TGF-β isoform added and the muscle cell type formed. TGF-β2 also invariably increased the rate at which contracting muscle cells were first observed in replated aggregates. The stimulatory effect of TGF-βs on the formation of mononucleate flat cells was completely abrogated by RA at 10?9 M while the number of myoblasts under similar conditions was unchanged. These data suggest that a complex interplay between retinoids and TGF-β isoforms may be involved in regulation of differentiation in early myogenesis. In the second approach, neutralizing polyclonal rabbit antibodies specific for TGF-β2 were injected into the cavity of mouse blastocysts 3.5 days post coitum (pc). After 1 day in culture, embryos were transferred to pseudopregnant females. The number of decidua, embryos and resorptions were counted at day 8.5–9.5 pc. Control antibody injected embryos implanted with high efficiency (87%) compared with anti-TGF-β2 injected embryos which implanted with an efficiency of only 43%. If empty decidua (resorptions) were included, the overall recovery was 71% and 32% for control and experimental embryos, respectively. Embryos that were recovered showed no overt macroscopic abnormalities. These results together impiy functions for TGF-βs in implantation as well as in later development of the embryo. © 1993Wiley-Liss, Inc.  相似文献   
47.
48.
49.
Amphibians and reptiles are sensitive to changes in the thermal environment, which varies considerably in human-modified landscapes. Although it is known that thermal traits of species influence their distribution in modified landscapes, how herpetofauna respond specifically to shifts in ambient temperature along forest edges remains unclear. This may be because most studies focus on local-scale metrics of edge exposure, which only account for a single edge or habitat patch. We predicted that accounting for the combined effect of multiple habitat edges in a landscape would best explain herpetofaunal response to thermally mediated edge effects. We (1) surveyed herpetofauna at two lowland, fragmented forest sites in central Colombia, (2) measured the critical thermal maximum (CTmax) of the species sampled, (3) measured their edge exposure at both local and landscape scales, and (4) created a thermal profile of the landscape itself. We found that species with low CTmax occurred both further from forest edges and in areas of denser vegetation, but were unaffected by the landscape-scale configuration of habitat edges. Variation in the thermal landscape was driven primarily by changes in vegetation density. Our results suggest that amphibians and reptiles with low CTmax are limited by both canopy gaps and proximity to edge, making them especially vulnerable to human modification of tropical forest. Abstract in Spanish is available with online material.  相似文献   
50.
Nuclear protein 1 (NUPR1) is a stress-induced protein activated by various stresses, such as inflammation and oxidative stress. We previously reported that Nupr1 deficiency increased bone volume by enhancing bone formation in 11-week-old mice. Analysis of differentially expressed genes between wild-type (WT) and Nupr1-knockout (Nupr1-KO) osteocytes revealed that high temperature requirement A 1 (HTRA1), a serine protease implicated in osteogenesis and transforming growth factor-β signaling was markedly downregulated in Nupr1-KO osteocytes. Nupr1 deficiency also markedly reduced HtrA1 expression, but enhanced SMAD1 signaling in in vitro-cultured primary osteoblasts. In contrast, Nupr1 overexpression enhanced HtrA1 expression in osteoblasts, suggesting that Nupr1 regulates HtrA1 expression, thereby suppressing osteoblastogenesis. Since HtrA1 is also involved in cellular senescence and age-related diseases, we analyzed aging-related bone loss in Nupr1-KO mice. Significant spine trabecular bone loss was noted in WT male and female mice during 6−19 months of age, whereas aging-related trabecular bone loss was attenuated, especially in Nupr1-KO male mice. Moreover, cellular senescence-related markers were upregulated in the osteocytes of 6−19-month-old WT male mice but markedly downregulated in the osteocytes of 19-month-old Nupr1-KO male mice. Oxidative stress-induced cellular senescence stimulated Nupr1 and HtrA1 expression in in vitro-cultured primary osteoblasts, and Nupr1 overexpression enhanced p16ink4a expression in osteoblasts. Finally, NUPR1 expression in osteocytes isolated from the bones of patients with osteoarthritis was correlated with age. Collectively, these results indicate that Nupr1 regulates HtrA1-mediated osteoblast differentiation and senescence. Our findings unveil a novel Nupr1/HtrA1 axis, which may play pivotal roles in bone formation and age-related bone loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号