首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2633篇
  免费   69篇
  国内免费   50篇
  2752篇
  2023年   24篇
  2022年   23篇
  2021年   45篇
  2020年   43篇
  2019年   63篇
  2018年   58篇
  2017年   36篇
  2016年   42篇
  2015年   84篇
  2014年   136篇
  2013年   147篇
  2012年   82篇
  2011年   131篇
  2010年   105篇
  2009年   141篇
  2008年   114篇
  2007年   129篇
  2006年   133篇
  2005年   115篇
  2004年   88篇
  2003年   83篇
  2002年   63篇
  2001年   45篇
  2000年   41篇
  1999年   43篇
  1998年   41篇
  1997年   35篇
  1996年   40篇
  1995年   29篇
  1994年   31篇
  1993年   29篇
  1992年   34篇
  1991年   38篇
  1990年   30篇
  1989年   26篇
  1988年   39篇
  1987年   29篇
  1986年   25篇
  1985年   34篇
  1984年   42篇
  1983年   12篇
  1982年   33篇
  1981年   27篇
  1980年   23篇
  1979年   25篇
  1978年   23篇
  1977年   26篇
  1976年   18篇
  1973年   12篇
  1972年   10篇
排序方式: 共有2752条查询结果,搜索用时 15 毫秒
81.
Expression of the basic helix-loop-helix factor Hairy and Enhancer of Split-1 (Hes1) is required for normal development of a number of tissues during embryonic development. Depending on context, Hes1 may act as a Notch signalling effector which promotes the undifferentiated and proliferative state of progenitor cells, but increasing evidence also points to Notch independent regulation of Hes1 expression. Here we use high resolution confocal scanning of EGFP in a novel BAC transgenic mouse reporter line, Tg(Hes1-EGFP)1Hri, to analyse Hes1 expression from embryonic day 7.0 (e7.0). Our data recapitulates some previous observations on Hes1 expression and suggests new, hitherto unrecognised expression domains including expression in the definitive endoderm at early somite stages before gut tube closure and thus preceding organogenesis. This mouse line will be a valuable tool for studies addressing the role of Hes1 in a number of different research areas including organ specification, development and regeneration.  相似文献   
82.
Our research group has extensively studied retinal regeneration in adult Xenopus laevis. However, X. laevis does not represent a suitable model for multigenerational genetics and genomic approaches. Instead, Xenopus tropicalis is considered as the ideal model for these studies, although little is known about retinal regeneration in X. tropicalis. In the present study, we showed that a complete retina regenerates at approximately 30 days after whole retinal removal. The regenerating retina was derived from the stem/progenitor cells in the ciliary marginal zone (CMZ), indicating a novel mode of vertebrate retinal regeneration, which has not been previously reported. In a previous study, we showed that in X. laevis, retinal regeneration occurs primarily through the transdifferentiation of retinal pigmented epithelial (RPE) cells. RPE cells migrate to the retinal vascular membrane and reform a new epithelium, which then differentiates into the retina. In X. tropicalis, RPE cells also migrated to the vascular membrane, but transdifferentiation was not evident. Using two tissue culture models of RPE tissues, it was shown that in X. laevis RPE culture neuronal differentiation and reconstruction of the retinal three‐dimensional (3‐D) structure were clearly observed, while in X. tropicalis RPE culture neither ßIII tubulin‐positive cells nor 3‐D retinal structure were seen. These results indicate that the two Xenopus species are excellent models to clarify the cellular and molecular mechanisms of retinal regeneration, as these animals have contrasting modes of regeneration; one mode primarily involves RPE cells and the other mode involves stem/progenitor cells in the CMZ. © 2014 Wiley Periodicals, Inc. Develop Neurobiol 74: 739–756, 2014  相似文献   
83.
84.
Neural stem (NS) cells are multipotent cells defined by their capacity to proliferate and differentiate into all neuronal and glial phenotypes. NS cells can be obtained from specific regions of the adult brain, or generated from embryonic stem cells (ESCs). NS cells differentiate into neural progenitor (NP) cells and subsequently neural precursors, as transient steps towards terminal differentiation into specific mature neuronal or glial phenotypes. When cultured in EGF and FGF2, ESC-derived NS cells have been reported to be stable and multipotent. Conditions that enable differentiation of NS cells through the committed progenitor and precursor stages to specific neuronal subtypes have not been fully established. In this study we investigated, using Lmx1a reporter ESCs, whether the length of neural induction (NI) dictated the phenotypic potential of cultures of ESC-derived NS cells or NP cells. Following 4, 7 or 10 day periods of NI, ESCs in monolayer culture were harvested and cultured as neurospheres, prior to replating as monolayer cultures for several passages in EGF and FGF2. The NS/NP cultures were then directed towards mature neuronal fates over 16-17 days. 4 and 7-day NS cell cultures could not be differentiated towards dopaminergic, serotonergic or cholinergic fates as determined by the absence of tyrosine hydroxylase, 5-HT or choline acetyltransferase (ChAT) immunolabelling. In contrast NS/NP cultures derived after 10 days of NI were able to generate tyrosine hydroxylase and 5-HT positive neurons (24 ± 6 and 13 ± 1% of the βIII-tubulin positive population, respectively, n = 3). Our data suggest that extended periods of neural induction enhanced the potential of mouse ESC-derived NS/NP cells to generate specific subtypes of neurons. NS/NP cells derived after shorter periods of NI appeared to be lineage-restricted in relation to the neuronal subtypes observed after removal of EGF.  相似文献   
85.
赵谦  杜娟 《生物磁学》2011,(18):3565-3568
DPPA2(Developmental pluripotency.associatedgene2)是近年来发现的一种在多能性细胞和某些癌组织中特意表达的基因。它与早期胚胎发育密切相关,参与维持胚胎干细胞的多能性及自我更新,还在体细胞重编程为多能性诱导干细胞的过程中发挥了作用。此外,它还是一种新的肿瘤抗原,有望成为某些恶性肿瘤的特异性免疫治疗新靶点。本文就DPPA2的结构、功能,以及它与胚胎发育、恶性肿瘤、体细胞重编程的关系等方面的研究进展做一综述。  相似文献   
86.
Low reprogramming efficiency and reduced pluripotency have been the two major obstacles in induced pluripotent stem (iPS) cell research. An effective and quick method to assess the pluripotency levels of iPS cells at early stages would significantly increase the success rate of iPS cell generation and promote its applications. We have identified a conserved imprinted region of the mouse genome, the Dlk1-Dio3 region, which was activated in fully pluripotent mouse stem cells but repressed in partially pluripotent cells. The degree of activation of this region was positively correlated with the pluripotency levels of stem cells. A mammalian conserved cluster of microRNAs encoded by this region exhibited significant expression differences between full and partial pluripotent stem cells. Several microRNAs from this cluster potentially target components of the polycomb repressive complex 2 (PRC2) and may form a feedback regulatory loop resulting in the expression of all genes and non-coding RNAs encoded by this region in full pluripotent stem cells. No other genomic regions were found to exhibit such clear expression changes between cell lines with different pluripotency levels; therefore, the Dlk1-Dio3 region may serve as a marker to identify fully pluripotent iPS or embryonic stem cells from partial pluripotent cells. These findings also provide a step forward toward understanding the operating mechanisms during reprogramming to produce iPS cells and can potentially promote the application of iPS cells in regenerative medicine and cancer therapy.  相似文献   
87.
Purpose: Photoreceptors cannot regenerate and recover their functions once disordered. Transplantation of retinal pigment epithelium (RPE) has recently become a possible therapeutic approach for retinal degeneration. In the present study, we investigated the induction of photoreceptors by coculturing primate embryonic stem cells (ESCs) with ESC-derived RPE cells. Methods: RPE cells were derived by coculturing ESCs and Sertoli cells. Photoreceptors were then induced by using ESC-derived RPE cells and retinoic acid (RA) Results: RPE cell generation was confirmed by morphological analysis, which revealed highly pigmented polygonal cells with a compact cell-cell arrangement. After coculturing ESCs and RPE cells, some ESC derivatives became immunopositive for rhodopsin. RT-PCR analysis demonstrated the expression of retina-related gene markers such as Pax6, CRX, IRBP, rhodopsin, rhodopsin kinase, and Muschx10A. When RA was added, a distinct increase in the expression of photoreceptor-specific proteins and genes was found. In addition, the differentiation of bipolar horizontal cells was demonstrated by protein and gene expression. The ESCs that were cocultured with RPE cells and treated with RA were transplanted into the renal capsule or intra-vitreal space of nude mice. Grafted ESC derivatives demonstrated extensive rhodopsin expression, and they survived and organized into recipient tissues, although they formed teratomas. Conclusion: These results indicate that coculturing ESCs with ESC-derived RPE cells is a useful and efficient method for inducing photoreceptors and providing an insight into the use of ESCs for retina regeneration.  相似文献   
88.
The pulmonary alveolar epithelium is composed of two morphologically distinct cell types, type I (TI) and type II (TII) cells. Alveolar TII cells synthesize, secrete, and recycle surfactant components; contain ion transporters; and secrete immune effector molecules. In response to alveolar injury, TII cells have the capacity to act as progenitor cells, proliferating and transdifferentiating into TI cells. Although various proteins are associated with TII cells, a plasma membrane marker specific to human TII cells that would be useful for identification in tissue and for isolating this cell type has not been described previously. We devised a strategy to produce a monoclonal antibody (MAb) specific to the apical surface of human TII cells and developed an MAb that appears to be specific for human TII cells. The antibody recognizes a 280- to 300-kDa protein, HTII-280, which has the biochemical characteristics of an integral membrane protein. HTII-280 is detected by week 11 of gestation and is developmentally regulated. HTII-280 is useful for isolating human TII cells with purities and viabilities >95%. HTII-280 is likely to be a useful morphological and biochemical marker of human TII cells that may help to advance our understanding of various lung pathological conditions, including the origin and development of various lung tumors. (J Histochem Cytochem 58:891–901, 2010)  相似文献   
89.
90.
TGF‐β3, TβR‐I, and TGF‐β‐activated Smad2 has been suggested to be a series of signaling molecules for secondary palate fusion. In this article, we show that a gene induced by TGF‐β, βig‐h3, is coincidentally expressed with TGF‐β3 in medial edge epithelial (MEE) cells undergoing apoptosis during normal palatal fusion. βig‐h3 was also highly expressed in the areas of post‐weaning mammary gland cells and developing phalangeal joints in which TGF‐β3 or BMP‐4‐induced apoptosis occurs, respectively. Blocking of βig‐h3 expression in E12.5 embryos with antisense oligodeoxynucleotides (ODN) resulted in cleft of the secondary palate in 84% of the treated mice that were born. Moreover, the antisense ODN treatment resulted in a failure of apoptosis in the MEE between palatal shelves in physical contact in organ culture. We conclude that βig‐h3 expression in the MEE is stimulated by TGF‐β3, causes cell death, and consequently results in complete fusion of the apposed palatal shelves. J. Cell. Biochem. 107: 818–825, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号