首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1400篇
  免费   100篇
  国内免费   75篇
  1575篇
  2024年   3篇
  2023年   22篇
  2022年   17篇
  2021年   48篇
  2020年   52篇
  2019年   44篇
  2018年   54篇
  2017年   43篇
  2016年   50篇
  2015年   49篇
  2014年   71篇
  2013年   111篇
  2012年   53篇
  2011年   59篇
  2010年   45篇
  2009年   70篇
  2008年   69篇
  2007年   59篇
  2006年   60篇
  2005年   59篇
  2004年   55篇
  2003年   41篇
  2002年   38篇
  2001年   27篇
  2000年   32篇
  1999年   23篇
  1998年   50篇
  1997年   15篇
  1996年   21篇
  1995年   26篇
  1994年   20篇
  1993年   23篇
  1992年   23篇
  1991年   15篇
  1990年   19篇
  1989年   10篇
  1988年   18篇
  1987年   15篇
  1986年   7篇
  1985年   14篇
  1984年   6篇
  1983年   2篇
  1982年   7篇
  1981年   9篇
  1980年   8篇
  1979年   4篇
  1978年   4篇
  1976年   2篇
  1973年   1篇
  1970年   1篇
排序方式: 共有1575条查询结果,搜索用时 0 毫秒
71.
Extracellular short fibulins, fibulin-3, -4, and -5, are components of the elastic fiber/microfibril system and are implicated in the formation and homeostasis of elastic tissues. In this study, we report new structural and functional properties of the short fibulins. Full-length human short fibulins were recombinantly expressed in human embryonic kidney cells and purified by immobilized metal ion affinity chromatography. All three fibulins showed various levels of degradation after the purification procedure. N-terminal sequencing revealed that all three fibulins are highly susceptible to proteolysis within the N-terminal linker region of the first calcium-binding epidermal growth factor domain. Proteolytic susceptibility of the linker correlated with its length. Exposure of these fibulins to matrix metalloproteinase (MMP)-1, -2, -3, -7, -9, and -12 resulted in similar proteolytic fragments with MMP-7 and -12 being the most potent proteases. Fibulin-3 proteolysis was almost completely inhibited in cell culture by the addition of 25 μm doxycycline (a broad spectrum MMP inhibitor). Reducible fibulin-4 dimerization and multimerization were consistently observed by SDS-PAGE, Western blotting, and mass spectrometry. Atomic force microscopy identified monomers, dimers, and multimers in purified fibulin-4 preparations with sizes of ∼10–15, ∼20–25, and ∼30–50 nm, respectively. All short fibulins strongly adhered to human fibroblasts and smooth muscle cells. Although only fibulin-5 has an RGD integrin binding site, all short fibulins adhere at a similar level to the respective cells. Solid phase binding assays detected strong calcium-dependent binding of the short fibulins to immobilized heparin, suggesting that these fibulins may bind cell surface-located heparan sulfate.  相似文献   
72.
Long-term endurance training or physical activity has been confirmed not only to improve physical performance, but to bring about an obvious beneficial effect on human health; however, the mechanism of this effect is not clear. The most studied health adaptations in skeletal muscle response to endurance exercise are increased muscle glycogen level and insulin sensitivity, fiber type transformation toward oxi- dative myofibers, and increased mitochondrial content/function. Mitochondria are dynamic organelles in eukaryotic cells critical in physical performance and disease occurrence. The mitochondrial life cycle spans biogenesis, maintenance, and clearance. Exercise training may promote each of these processes and confer positive impacts on skeletal muscle contractile and metabolic functions. This review focused on the regula- tion of these processes by endurance exercise and discussed its potential benefits in health and disease. We presented evidence suggesting that exercise training potentiates not only the biogenesis of mitochondria but also the removal of old and unhealthy mitochondria through mitochondrial quality control.  相似文献   
73.
Muscle proteases from mackerel and milkfish were purified to electrophoretical homogeneity by concanavalin A-Sepharose and Sephadex G-100 chromatographies. Both proteases appear to be an aspartic protease, cathepsin D (EC 3.4.23.5). The molecular weights of the purified cathepsin D’s from mackerel and milkfish were 51,000 and 54,000, estimated by Sephadex G-100, and 59,000 and 61,000 by SDS–PAGE, respectively. Both cathepsin D’s were completely inhibited by pepstatin, but not affected by leupeptin, N-ethylmaleimide, dithiothreitol, or glutathione. ß-Mercaptoethanol, iodoacetic acid, p-chloromercuri-benzoate, phenylmethylsulfonyl fluoride, and sodium dodecyl sulfate partially or completely inhibited both cathepsin D’s. Na+ and K+ partially activated the cathepsin D from milkfish. Both cathepsin D’s were inhibited by Mg2+, Sr2+, Fe2+, and H2+, but activated by Ca2+, Co2+, Ni2+, Cu2+, Zn2+, and Cd2+. The pI and optimal temperature of the cathepsin D’s from mackerel and milkfish were 5.04 and 4.91, 45°, and 50°C, respectively. The temperatures for inactivating 50% activity of the cathepsin D’s from mackerel and milkfish during 20 min of incubation were 53° and 48°C, respectively. Both cathepsin D’s had similar optimal pHs near 3. The activity of that from milkfish markedly decreased when the pH was higher than 4, and was almost completely lost at pH above 6, while that from mackerel still had at least 40% activity at pH 6.  相似文献   
74.
High cell density perfusion process of antibody producing CHO cells was developed in disposable WAVE Bioreactor? using external hollow fiber filter as cell separation device. Both “classical” tangential flow filtration (TFF) and alternating tangential flow system (ATF) equipment were used and compared. Consistency of both TFF‐ and ATF‐based cultures was shown at 20–35 × 106 cells/mL density stabilized by cell bleeds. To minimize the nutrients deprivation and by‐product accumulation, a perfusion rate correlated to the cell density was applied. The cells were maintained by cell bleeds at density 0.9–1.3 × 108 cells/mL in growing state and at high viability for more than 2 weeks. Finally, with the present settings, maximal cell densities of 2.14 × 108 cells/mL, achieved for the first time in a wave‐induced bioreactor, and 1.32 × 108 cells/mL were reached using TFF and ATF systems, respectively. Using TFF, the cell density was limited by the membrane capacity for the encountered high viscosity and by the pCO2 level. Using ATF, the cell density was limited by the vacuum capacity failing to pull the highly viscous fluid. Thus, the TFF system allowed reaching higher cell densities. The TFF inlet pressure was highly correlated to the viscosity leading to the development of a model of this pressure, which is a useful tool for hollow fiber design of TFF and ATF. At very high cell density, the viscosity introduced physical limitations. This led us to recommend cell densities under 1.46 × 108 cell/mL based on the analysis of the theoretical distance between the cells for the present cell line. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:754–767, 2013  相似文献   
75.
Rhamnolipids are high‐value effective biosurfactants produced by Pseudomonas aeruginosa. Large‐scale production of rhamnolipids is still challenging especially under free‐cell aerobic conditions in which the highly foaming nature of the culture broth reduces the productivity of the process. Immobilized systems relying on oxygen as electron acceptor have been previously investigated but oxygen transfer limitation presents difficulties for continuous rhamnolipid production. A coupled system using immobilized cells and nitrate instead of oxygen as electron acceptor taking advantage of the ability of P. aeruginosa to perform nitrate respiration was evaluated. This denitrification‐based immobilized approach based on a hollow‐fiber setup eliminated the transfer limitation problems and was found suitable for continuous rhamnolipid production in a period longer than 1,500 h. It completely eliminated the foaming difficulties related to aerobic systems with a comparable specific productivity of 0.017 g/(g dry cells)‐h and allowed easy recovery of rhamnolipids from the cell‐free medium. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 346–351, 2013  相似文献   
76.
目的:探讨采用不同剂量的丹参注射液联合波尼松龙治疗口腔粘膜下纤维性病的治疗效果,为今后的治疗提供更多的依据。方法:选择从2010年1月至2013年1月期间在我院口腔科治疗的100例口腔粘膜下纤维性病患者,根据门诊号,随机将患者分为低剂量组、次低剂量组、中剂量组、高剂量组和对照组,每组各20例,低剂量组、次低剂量组、中剂量组、高剂量组,分别使用不同剂量丹参注射液联合波尼松龙治疗,对照组单纯使用波尼松龙治疗,观察治疗一个疗程后患者口腔粘膜情况及张口度。结果:中剂量组和高剂量组情况改善要明显好于低剂量、次低剂量组、对照组,差异具有显著性(P〈0.05)。结论:丹参注射液联合泼尼松龙治疗口腔粘膜下纤维性病疗效令人满意,其中低剂量丹参注射液便有效果,一定范围内剂量越高,疗效越好,值得在临床推f,  相似文献   
77.
Harvesting mechanical energy from human activities by triboelectric nanogenerators (TENGs) is an effective approach for sustainable, maintenance‐free, and green power source for wireless, portable, and wearable electronics. A theoretical model for contact‐mode triboelectric nanogenerators based on the principles of charge conservation and zero loop‐voltage is illustrated. Explicit expressions for the output current, voltage, and power are presented for the TENGs with an external load of resistance. Experimental verification is conducted by using a laboratory‐fabricated contact‐mode TENG made from conducting fabric electrodes and polydimethylsiloxane/graphene oxide composite as the dielectric layer. Excellent agreements of the output voltage, current, and power are demonstrated between the theoretical and experimental results, without any adjustable parameters. The effects of the moving speed on output voltage, current, and power are illustrated in three cases, that is, the motion with constant speed, the sinusoidal motion cycles, and the real walking cycles by human subject. The fully verified theoretical model is a very powerful tool to guide the design of the device structure and selection of materials, and optimization of performance with respect to the application conditions of TENGs.  相似文献   
78.
When a laser is mode-locked, it emits a train of ultra-short pulses at a repetition rate determined by the laser cavity length. This article outlines a new and inexpensive procedure to force mode locking in a pre-adjusted nonlinear polarization rotation fiber laser. This procedure is based on the detection of a sudden change in the output polarization state when mode locking occurs. This change is used to command the alignment of the intra-cavity polarization controller in order to find mode-locking conditions. More specifically, the value of the first Stokes parameter varies when the angle of the polarization controller is swept and, moreover, it undergoes an abrupt variation when the laser enters the mode-locked state. Monitoring this abrupt variation provides a practical easy-to-detect signal that can be used to command the alignment of the polarization controller and drive the laser towards mode locking. This monitoring is achieved by feeding a small portion of the signal to a polarization analyzer measuring the first Stokes parameter. A sudden change in the read out of this parameter from the analyzer will occur when the laser enters the mode-locked state. At this moment, the required angle of the polarization controller is kept fixed. The alignment is completed. This procedure provides an alternate way to existing automating procedures that use equipment such as an optical spectrum analyzer, an RF spectrum analyzer, a photodiode connected to an electronic pulse-counter or a nonlinear detecting scheme based on two-photon absorption or second harmonic generation. It is suitable for lasers mode locked by nonlinear polarization rotation. It is relatively easy to implement, it requires inexpensive means, especially at a wavelength of 1550 nm, and it lowers the production and operation costs incurred in comparison to the above-mentioned techniques.  相似文献   
79.
ABSTRACT

The mechanical and structural properties of the extracellular matrix (ECM) play an important role in regulating cell fate. The natural ECM has a complex fibrillar structure and shows nonlinear mechanical properties, which are both difficult to mimic synthetically. Therefore, systematically testing the influence of ECM properties on cellular behavior is very challenging. In this work we show two different approaches to tune the fibrillar structure and mechanical properties of fibrin hydrogels. Addition of extra thrombin before gelation increases the protein density within the fibrin fibers without significantly altering the mechanical properties of the resulting hydrogel. On the other hand, by forming a composite hydrogel with a synthetic biomimetic polyisocyanide network the protein density within the fibrin fibers decreases, and the mechanics of the composite material can be tuned by the PIC/fibrin mass ratio. The effect of the changes in gel structure and mechanics on cellular behavior are investigated, by studying human mesenchymal stem cell (hMSC) spreading and differentiation on these gels. We find that the trends observed in cell spreading and differentiation cannot be explained by the bulk mechanics of the gels, but correlate to the density of the fibrin fibers the gels are composed of. These findings strongly suggest that the microscopic properties of individual fibers in fibrous networks play an essential role in determining cell behavior.  相似文献   
80.
The existence of a 30‐nm fiber as a basic folding unit for DNA packaging has remained a topic of active discussion. Here, we characterize the supramolecular structures formed by reversible Mg2+‐dependent self‐association of linear 12‐mer nucleosomal arrays using microscopy and physicochemical approaches. These reconstituted chromatin structures, which we call “oligomers”, are globular throughout all stages of cooperative assembly and range in size from ~50 nm to a maximum diameter of ~1,000 nm. The nucleosomal arrays were packaged within the oligomers as interdigitated 10‐nm fibers, rather than folded 30‐nm structures. Linker DNA was freely accessible to micrococcal nuclease, although the oligomers remained partially intact after linker DNA digestion. The organization of chromosomal fibers in human nuclei in situ was stabilized by 1 mM MgCl2, but became disrupted in the absence of MgCl2, conditions that also dissociated the oligomers in vitro. These results indicate that a 10‐nm array of nucleosomes has the intrinsic ability to self‐assemble into large chromatin globules stabilized by nucleosome–nucleosome interactions, and suggest that the oligomers are a good in vitro model for investigating the structure and organization of interphase chromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号