首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   289篇
  免费   30篇
  国内免费   7篇
  2023年   5篇
  2022年   5篇
  2021年   8篇
  2020年   9篇
  2019年   6篇
  2018年   15篇
  2017年   12篇
  2016年   6篇
  2015年   11篇
  2014年   7篇
  2013年   11篇
  2012年   6篇
  2011年   13篇
  2010年   9篇
  2009年   16篇
  2008年   12篇
  2007年   19篇
  2006年   21篇
  2005年   14篇
  2004年   15篇
  2003年   15篇
  2002年   10篇
  2001年   16篇
  2000年   11篇
  1999年   6篇
  1998年   5篇
  1997年   4篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1990年   8篇
  1989年   2篇
  1988年   4篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
排序方式: 共有326条查询结果,搜索用时 15 毫秒
51.
Tropical dry forests (hereafter TDFs) have been extensively logged and converted into croplands or grasslands worldwide. Tumbesian forests in southwest Ecuador are among the most diverse and endangered TDFs. They face seasonal droughts of varied severity and are also subjected to episodic very wet and cloudy conditions during El Niño events. However, we lack a local quantification of their responses to regional climate (temperature, precipitation, cloud cover) and El Niño which could change across sites. Here we use dendrochronology to quantify the radial-growth rates and the responses to climate (mean temperatures, precipitation amount, cloud cover and drought severity) of two major tree species forming annual rings (Geoffroea spinosa, Handroanthus chrysanthus) in three TDFs with different local climate conditions. The lowest (1.0 mm yr−1) and the highest (2.1 mm yr−1) radial-growth rates of both tree species were found in the hottest-driest and moderately hot sites, respectively. G. spinosa growth responded positively to wet, cool and cloudy conditions in the hottest-driest and moderately hot sites, but the most intense response to drought was observed in the driest site at 1–5 months long scales. H. chrysanthus growth reacted positively to high growing-season precipitation in all sites, particularly in the driest site, and to cloudy conditions in moderately hot sites. The growth of H. chrysanthus was negatively associated to the Southern Oscillation Index in the dry-hot and in the moderately hot sites. Tree species coexisting in TDFs show varied growth responses to regional weather variability, drought severity and El Niño events across sites with different local climate conditions.  相似文献   
52.
Tropical rainforests play an important role in the storage and cycling of global terrestrial carbon. In the carbon cycle, net primary productivity of forests is linked to soil respiration through the production and decomposition of forest litter. Climate seasonality appears to influence the production of litter although there is considerable variability within and across forests that makes accurate estimates challenging. We explored the effects of climate seasonality on litterfall dynamics in a lowland humid rainforest over a 7‐year period from 2007 to 2013, including an El Niño/La Niña cycle in 2010/2011. Litterfall was sampled fortnightly in 24 traps of 0.50 m diameter within a 1‐ha forest plot. Total mean litterfall was 10.48 ± 1.32 (±SD, dry weight) Mg ha?1 year?1 and seasonal in distribution. The different components of litterfall were divided into LLeaf (63.5%), LWood (27.7%) and LFF[flowers & fruit] (8.8%), which all demonstrated seasonal dynamics. Peak falls in LLeaf and LWood were highly predictable, coinciding with maximum daily temperatures and 1 and 2 months prior to maximum monthly rainfall. The El Niño/La Niña cycle coincided with elevated local winter temperatures and peak falls of LLeaf and LWood. Importantly, we establish how sampling length and generalized additive models eliminate the requirement for extensive within‐site sampling when the intention is to describe dynamics in litterfall patterns. Further, a greater understanding of seasonal cycles in litterfall allows us to distinguish between endogenous controls and environmental factors, such as El Niño events, which may have significant impacts on biochemical cycles.  相似文献   
53.
Mounting evidence suggests that anthropogenic global change is altering plant species composition in tropical forests. Fewer studies, however, have focused on long‐term trends in reproductive activity, in part because of the lack of data from tropical sites. Here, we analyze a 28‐year record of tropical flower phenology in response to anthropogenic climate and atmospheric change. We show that a multidecadal increase in flower activity is most strongly associated with rising atmospheric CO2 concentrations using yearly aggregated data. Compared to significant climatic factors, CO2 had on average an approximately three‐, four‐, or fivefold stronger effect than rainfall, solar radiation, and the Multivariate ENSO Index, respectively. Peaks in flower activity were associated with greater solar radiation and lower rainfall during El Niño years. The effect of atmospheric CO2 on flowering has diminished over the most recent decade for lianas and canopy trees, whereas flowering of midstory trees and shrub species continued to increase with rising CO2. Increases in flowering were accompanied by a lengthening of flowering duration for canopy and midstory trees. Understory treelets did not show increases in flowering but did show increases in duration. Given that atmospheric CO2 will likely continue to climb over the next century, a long‐term increase in flowering activity may persist in some growth forms until checked by nutrient limitation or by climate change through rising temperatures, increasing drought frequency and/or increasing cloudiness and reduced insolation.  相似文献   
54.
Coral reef ecosystems are declining worldwide and under foreseeable threat due to climate change, resulting in significant changes in reef communities. It is unknown, however, how such community changes impact interspecific interactions. Recent extreme weather events affecting the Great Barrier Reef, that is, consecutive cyclones and the 2016 El Niño event, allowed us to explore potential consequences in the mutualistic interactions involving cleaner fish Labroides dimidiatus (hereafter “cleaner”). After the perturbations, cleaner densities were reduced by 80%, disproportionally compared to the variety of reef fish clients from which cleaners remove ectoparasites. Consequently, shifts in supply and demand yielded an increase in the clients’ demand for cleaning. Therefore, clients became less selective toward cleaners, whereas cleaners were able to choose from a multitude of partners. In parallel, we found a significant decline in the ability of cleaners to manage their reputation and to learn to prioritize ephemeral food sources to maximize food intake in laboratory experiments. In other words, cleaners failed to display the previously documented strategic sophistication that made this species a prime example for fish intelligence. In conclusion, low population densities may cause various effects on individual behavior, and as a consequence, interspecific interactions. At the same time, our data suggest that a recovery of population densities would cause a recovery of previously described interaction patterns and cleaner strategic sophistication within the lifetime of individuals.  相似文献   
55.
During the ENSO event of 1997–1998, density and population structure were evaluated in a Macrocystis pyrifera forest located in Bahía Tortugas, Baja California, Mexico, near the southern limit of the species' distribution in the Northern Hemisphere. Observations in Bahía Tortugas were made quarterly from January 1997 to September 1998 using SCUBA diving surveys. No macroscopic plants were found in the Bahía Tortugas area from October 1997 to April 1998, a local absence of at least 7 months. Aerial surveys further suggest regional disappearance along most of the Baja California coast during the event. Unexpectedly, plants were found in Bahía Tortugas again in July 1998, in spite of the widespread disappearance of the species less than a year earlier. Long-distance spore dispersal was an unlikely cause of the recruitment because: 1) the nearest spore source was more than 100 km away; 2) recruitment appeared to be simultaneous at many sites and occurred rapidly after the cessation of the ENSO event; and 3) the recruits occurred in the same areas as before disappearance. We suggest that a microscopic stage that was not visible during dive surveys survived the stressful conditions of ENSO and caused the recruitment event, supporting the hypothesis that a bank of microscopic forms can survive conditions stressful to macroscopic algae.  相似文献   
56.
Fire histories were compared between the south-western United States and northern Patagonia, Argentina using both documentary records (1914–87 and 1938–96, respectively) and tree-ring reconstructions over the past several centuries. The two regions share similar fire–climate relationships and similar relationships of climatic anomalies to the El Niño–Southern Oscillation (ENSO). In both regions, El Niño events coincide with above-average cool season precipitation and increased moisture availability to plants during the growing season. Conversely, La Niña events correspond with drought conditions. Monthly patterns of ENSO indicators (southern oscillation indices and tropical Pacific sea surface temperatures) preceding years of exceptionally widespread fires are highly similar in both regions during the 20th century. Major fire years tend to follow the switching from El Niño to La Niña conditions. El Niño conditions enhance the production of fine fuels, which when desiccated by La Niña conditions create conditions for widespread wildfires. Decadal-scale patterns of fire occurrence since the mid-17th century are highly similar in both regions. A period of decreased fire occurrence in both regions from c. 1780–1830 coincides with decreased amplitude and/or frequency of ENSO events. The interhemispheric synchrony of fire regimes in these two distant regions is tentatively interpreted to be a response to decadal-scale changes in ENSO activity. The ENSO–fire relationships of the south-western USA and northern Patagonia document the importance of high-frequency climatic variation to fire hazard. Thus, in addition to long-term trends in mean climatic conditions, multi-decadal scale changes in year-to-year variability need to be considered in assessments of the potential influence of climatic change on fire regimes.  相似文献   
57.
Winter frosts caused by radiative cooling were hypothesized to limit successful reintroduction of Hawaiian plants other than Acacia koa to alien‐dominated grasslands above 1700 m elevation. We determined, in the laboratory, the temperature at which irreversible tissue damage occurred to Metrosideros polymorpha leaves. We also conducted a field study of this species to determine if (1) leaf damage was correlated with sub‐zero leaf temperatures, (2) radiative cooling could be moderated by canopies of A. koa, and (3) low soil temperatures contributed to seedling damage. The last was evaluated by thermally buffering seedlings with water‐filled bladders placed at their base to keep roots warm, or by installing a radiation shield to reduce early morning transpiration when water uptake from cold soils would be least. Leaf temperatures were monitored between midnight and 7:00 a.m. using fine‐wire thermocouples, and leaf damage was recorded monthly. In the laboratory, supercooling protected leaves from mild sub‐zero temperatures; irreversible tissue damage occurred at about ?8°C. In the field, leaf damage was strongly correlated with degree‐hours below freezing. Unprotected seedlings suffered the greatest leaf damage. Those sheltered under A. koa trees rarely experienced temperatures below ?3°C, and damage was minimal. Shaded and thermally buffered seedlings suffered less damage than unprotected plants, probably due to elevated leaf temperatures rather than improved water relations. Using A. koa or artificial devices to reduce radiative cooling during winter nights should enhance establishment of M. polymorpha in high‐elevation rangeland.  相似文献   
58.
Climate change poses an immediate threat to the persistence and distribution of many species, yet our ability to forecast changes in species composition is hindered by poor understanding of the extent to which higher trophic‐level interactions may buffer or exacerbate the adverse effects of warming. We incorporated species‐specific consumption data from 240 wolf‐killed elk carcasses from Yellowstone National Park into stochastic simulation models to link trends in the El Niño Southern Oscillation (ENSO) to food procurement by a guild of scavengers as a function of gray wolf reintroduction. We find that a shift in ENSO towards the El Niño (warming) phase of the cycle coincident with increasing global temperatures reduces carrion for scavengers, particularly those with strong seasonal patterns in resource use such as grizzly bears. Wolves alleviate these warming‐induced food shortages by rendering control over this crucial resource to biotic rather than abiotic factors. Ecosystems with intact top predators are likely to exhibit stronger biotic regulation and should be more resistant to climate change than ecosystems lacking them.  相似文献   
59.
Semiarid environments throughout the world have lost a major part of their woody vegetation and biodiversity due to the effects of wood cutting, cattle grazing and subsistence agriculture. The resulting state is typically used for cattle production, but the productivity of these systems is often very low, and erosion of the unprotected soil is a common problem. Such dry‐land degradation is of great international concern, not only because the resulting state is hardly productive but also because it paves the way to desertification. The natural distribution of the genus Prosopis includes arid and semiarid zones of the Americas, Africa and Asia, but the majority of the Prosopis species are, however, native to the Americas. In order to assess a likely gradient in the response of tree species to precipitation, temperature and their connection to El Niño southern oscillation (ENSO) events, two Prosopis species were chosen along a latitudinal gradient in Latin America, from northern Peru to central Chile: Prosopis pallida from a semi‐arid land in northern and southern Peru and P. chilensis from a semiarid land in central Chile. Growth rings of each species were crossdated at each sampling site using classical dendrochronological techniques. Chronologies were related with instrumental climatic records in each site, as well as with SOI and N34 series. Cross‐correlation, spectral and wavelet analysis techniques were used to assess the relation of growth with precipitation and temperature. Despite the long distance among sites, the two Prosopis species presented similar responses. Thus, the two species' growth is positively correlated to precipitation, while with temperature it is not. In northern Peru, precipitation and growth of P. pallida present a similar cyclic pattern, with a period of around 3 years. On the other hand, P. pallida in southern Peru, and P. chilensis also present this cyclic pattern, but also another one with lower frequency, coinciding with the pattern of precipitation. Both cycles are within the range of the ENSO band.  相似文献   
60.
1. Long‐term studies in ecology are essential for understanding natural variability and in interpreting responses to disturbances and human perturbations. We assessed the long‐term variability, stability and persistence of macroinvertebrate communities by analysing data from three regions in northern California with a mediterranean‐climate. During the study period, precipitation either increased or decreased, and extreme drought events occurred in each region. 2. Temporal trends in precipitation resulted in shifts from ‘dry‐year’ communities, dominated by taxa adapted to no or low flow, to ‘wet‐year’ communities dominated by taxa adapted to high flows. The abundance of chironomid larvae was an important driver of community change. Directional change in community composition occurred at all sites and was correlated with precipitation patterns, with more dramatic change occurring in smaller streams. 3. All communities exhibited high to moderate persistence (defined by the presence/absence of a species) and moderate to low stability (defined by changes in abundance) over the study period. Stability and persistence were correlated with climatic variation (precipitation and El Niño Southern Oscillation) and stream size. Stability and persistence increased as a result of drought in small streams (first‐order) but decreased in larger streams (second‐ and third‐order). Communities from the dry season were less stable than those from the wet‐season. 4. This study demonstrates the importance of long‐term studies in capturing the effects of and recovery from rare events, such as the prolonged and extreme droughts considered here.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号