首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5431篇
  免费   426篇
  国内免费   1021篇
  2024年   24篇
  2023年   101篇
  2022年   124篇
  2021年   160篇
  2020年   215篇
  2019年   196篇
  2018年   211篇
  2017年   200篇
  2016年   223篇
  2015年   217篇
  2014年   304篇
  2013年   489篇
  2012年   216篇
  2011年   275篇
  2010年   234篇
  2009年   310篇
  2008年   295篇
  2007年   303篇
  2006年   310篇
  2005年   242篇
  2004年   223篇
  2003年   233篇
  2002年   181篇
  2001年   174篇
  2000年   127篇
  1999年   123篇
  1998年   99篇
  1997年   85篇
  1996年   97篇
  1995年   85篇
  1994年   73篇
  1993年   88篇
  1992年   55篇
  1991年   92篇
  1990年   44篇
  1989年   49篇
  1988年   40篇
  1987年   38篇
  1986年   40篇
  1985年   34篇
  1984年   46篇
  1983年   34篇
  1982年   34篇
  1981年   28篇
  1980年   18篇
  1979年   18篇
  1978年   18篇
  1977年   13篇
  1976年   11篇
  1972年   6篇
排序方式: 共有6878条查询结果,搜索用时 593 毫秒
991.
Smoothly varying muscle fibre orientations in the heart are critical to its electrical and mechanical function. From detailed histological studies and diffusion tensor imaging, we now know that fibre orientations in humans vary gradually from approximately ? 70° in the outer wall to +80° in the inner wall. However, the creation of fibre orientation maps for computational analyses remains one of the most challenging problems in cardiac electrophysiology and cardiac mechanics. Here, we show that Poisson interpolation generates smoothly varying vector fields that satisfy a set of user-defined constraints in arbitrary domains. Specifically, we enforce the Poisson interpolation in the weak sense using a standard linear finite element algorithm for scalar-valued second-order boundary value problems and introduce the feature to be interpolated as a global unknown. User-defined constraints are then simply enforced in the strong sense as Dirichlet boundary conditions. We demonstrate that the proposed concept is capable of generating smoothly varying fibre orientations, quickly, efficiently and robustly, both in a generic bi-ventricular model and in a patient-specific human heart. Sensitivity analyses demonstrate that the underlying algorithm is conceptually able to handle both arbitrarily and uniformly distributed user-defined constraints; however, the quality of the interpolation is best for uniformly distributed constraints. We anticipate our algorithm to be immediately transformative to experimental and clinical settings, in which it will allow us to quickly and reliably create smooth interpolations of arbitrary fields from data-sets, which are sparse but uniformly distributed.  相似文献   
992.
Dentine is the fundamental substrate of restorative dentistry, and its properties and characteristics are the key determinants of restorative processes. In contemporary restorative techniques, bonding to Dentine is created by the impregnation of the demineralised dentine by blends of resin monomers. In this paper, a numerical model of dentinal infiltration is proposed. The aim is to follow the resin front and to point out the optimal parameter set. The main tool is a level set technique to follow the evolving interface. It is coupled with the Navier–Stokes equation where capillary effect gives rise to the appearance of a new term in the variational approach than discretised by finite elements. Using an appropriate geometry representing demineralised dentine, the moving front is observed. First, a simulation of porosimetry test is achieved in order to validate the model. The two expected pore sizes are detected and the simulation also points out limitations of mercury intrusion porosimetry test in an educational way. Then a wetting fluid (representing the dental resin) is numerically infiltrated. In the dentinal porous network, capillarity is taken into account in our model by including a capillary term. A crucial conclusion is drawn from this study: resin application time by practitioners is sufficient if, in the infiltration process, the wetting phase is the resin.  相似文献   
993.
The method evaluating the ecological risk for provincial land-use overall planning is introduced so as to construct an environment-friendly land-use pattern. The ecological risk degree is determined by risk source intensity and ecological vulnerability degree. In order to quantify them, the calculation process, classification standard, and acceptability analysis are established. With an example, it evaluates the ecological risk of land-use overall planning in Sichuan Province. The results show: (1) the implementation of planning can reduce the potential ecological risk effectively, and the whole ecological risk level is on the decline during the planning period; (2) the spatial difference of ecological risk is significant. However, the basic pattern of ecological risks, which is higher in the east and lower in the west, has not changed after the planning implementation, and the higher risk areas mainly distribute in the economically developed and densely populated areas; (3) according to the spatiotemporal characteristics, the emphasis of ecological risk prevention and control can be identified, and some countermeasures can be suggested in order to decrease the potential adverse effects. The method proposed in the article can provide decision basis for provincial land-use overall planning, and is helpful to ecological risk analysis of other planning.  相似文献   
994.
Three new eriophyid species (Phyllocoptinae), Shevtchenkella denticulata sp. n., Notallus pestehae sp. n. and Echinacrus ruthenicus sp. n., were described from Eryngium thyrsoideum Boiss. (Apiaceae), Pistacia vera L. (Anacardiaceae) and Lycium ruthenicum Murray (Solanaceae), respectively. All the three new species were collected from southwest of the East Azerbaijan province, Iran in 2011. It is the first record of an eriophyoid mite collected from E. thyrsoideum and L. ruthenicum and the first record of Notallus from Anacardiaceae plant family.  相似文献   
995.
Thanks to its good corrosion resistance and biocompatibility, superelastic Ni–Ti wire alloys have been successfully used in orthodontic treatment. Therefore, it is important to quantify and evaluate the level of orthodontic force applied to the bracket and teeth in order to achieve tooth movement. In this study, three dimensional finite element models with a Gibbs-potential-based-formulation and thermodynamic principles were used. The aim was to evaluate the influence of possible intraoral temperature differences on the forces exerted by NiTi orthodontic arch wires with different cross sectional shapes and sizes. The prediction made by this phenomenological model, for superelastic tensile and bending tests, shows good agreement with the experimental data. A bending test is simulated to study the force variation of an orthodontic NiTi arch wire when it loaded up to the deflection of 3 mm, for this task one half of the arch wire and the 3 adjacent brackets were modeled. The results showed that the stress required for the martensite transformation increases with the increase of cross-sectional dimensions and temperature. Associated with this increase in stress, the plateau of this transformation becomes steeper. In addition, the area of the mechanical hysteresis, measured as the difference between the forces of the upper and lower plateau, increases.  相似文献   
996.
It has been recently suggested that mechanical loads applied at frequencies close to the natural frequencies of bone could enhance bone apposition due to the resonance phenomenon. Other applications of bone modal analysis are also suggested. For the above-mentioned applications, it is important to understand how patient-specific bone shape and density distribution influence the natural frequencies of bones. We used finite element models to study the effects of bone shape and density distribution on the natural frequencies of the femur in free boundary conditions. A statistical shape and appearance model that describes shape and density distribution independently was created, based on a training set of 27 femora. The natural frequencies were then calculated for different shape modes varied around the mean shape while keeping the mean density distribution, for different appearance modes around the mean density distribution while keeping the mean bone shape, and for the 27 training femora. Single shape or appearance modes could cause up to 15% variations in the natural frequencies with certain modes having the greatest impact. For the actual femora, shape and density distribution changed the natural frequencies by up to 38%. First appearance mode that describes the general cortical bone thickness and trabecular bone density had one of the strongest impacts. The first appearance mode could therefore provide a sensitive measure of general bone health and disease progression. Since shape and density could cause large variations in the calculated natural frequencies, patient-specific FE models are needed for accurate estimation of bone natural frequencies.  相似文献   
997.
We hypothesize that both compression and elongation stress–strain data should be considered for modeling and simulation of soft tissue indentation. Uniaxial stress–strain data were obtained from in vitro loading experiments of porcine liver tissue. An axisymmetric finite element model was used to simulate liver tissue indentation with tissue material represented by hyperelastic models. The material parameters were derived from uniaxial stress–strain data of compressions, elongations, and combined compression and elongation of porcine liver samples. in vitro indentation tests were used to validate the finite element simulation. Stress–strain data from the simulation with material parameters derived from the combined compression and elongation data match the experimental data best. This is due to its better ability in modeling 3D deformation since the behavior of biological soft tissue under indentation is affected by both its compressive and tensile characteristics. The combined logarithmic and polynomial model is somewhat better than the 5-constant Mooney–Rivlin model as the constitutive model for this indentation simulation.  相似文献   
998.
Cyanophora is an important glaucophyte genus of unicellular biflagellates that may have retained ancestral features of photosynthetic eukaryotes. The nuclear genome of Cyanophora was recently sequenced, but taxonomic studies of more than two strains are lacking for this genus. Furthermore, no study has used molecular methods to taxonomically delineate Cyanophora species. Here, we delimited the species of Cyanophora using light and electron microscopy, combined with molecular data from several globally distributed strains, including one newly established. Using a light microscope, we identified two distinct morphological groups: one with ovoid to ellipsoidal vegetative cells and another with dorsoventrally flattened or broad, bean‐shaped vegetative cells containing duplicated plastids. Our light and scanning electron microscopy clearly distinguished three species with ovoid to ellipsoidal cells (C. paradoxa Korshikov, C. cuspidata Tos.Takah. & Nozaki sp. nov., and C. kugrensii Tos.Takah. & Nozaki sp. nov.) and two species with broad, bean‐shaped cells (C. biloba Kugrens, B.L.Clay, C.J.Mey. & R.E.Lee and C. sudae Tos.Takah. & Nozaki sp. nov.) based on differences in cell shape and surface ornamentations of the vegetative cells under the field‐emission scanning electron microscope. Molecular phylogenetic analyses of P700 chl a apoprotein A2 (psaB) genes and internal transcribed spacer (ITS) regions of nuclear ribosomal DNA (rDNA), as well as a comparison of secondary structures of nuclear rDNA ITS‐2 and genetic distances of psaB genes, supported the delineation of five morphological species of Cyanophora.  相似文献   
999.
Information on fish movement and growth is primarily obtained through the marking and tracking of individuals with external tags, which are usually affixed to anesthetized individuals at the surface. However, the quantity and quality of data obtained by this method is often limited by small sample sizes owing to the time associated with the tagging process, high rates of tagging‐related mortality, and displacement of tagged individuals from the initial capture location. To address these issues, we describe a technique for applying external streamer and dart tags in situ, which uses SCUBA divers to capture and tag individual fish on the sea floor without the use of anesthetic. We demonstrate this method for Indo‐Pacific lionfish (Pterois volitans/P. miles), species which are particularly vulnerable to barotrauma when transported to and handled at the surface. To test our method, we tagged 161 individuals inhabiting 26 coral reef locations in the Bahamas over a period of 3 years. Our method resulted in no instances of barotrauma, reduced handling and recovery time, and minimal post‐tagging release displacement compared with conventional ex situ tag application. Opportunistic resighting and recapture of tagged individuals reveals that lionfish exhibit highly variable site fidelity, movement patterns, and growth rates on invaded coral reef habitats. In total, 24% of lionfish were resighted between 29 and 188 days after tagging. Of these, 90% were located at the site of capture, while the remaining individuals were resighted between 200 m and 1.1 km from initial site of capture over 29 days later. In situ growth rates ranged between 0.1 and 0.6 mm/day. While individuals tagged with streamer tags posted slower growth rates with increasing size, as expected, there was no relationship between growth rate and fish size for individuals marked with dart tags, potentially because of large effects of tag presence on the activities of small bodied lionfish (i.e., <150 mm), where the tag was up to 7.6% of the lionfish's mass. Our study offers a novel in situ tagging technique that can be used to provide critical information on fish site fidelity, movement patterns, and growth in cases where ex situ tagging is not feasible.  相似文献   
1000.
Reducing toxic effects of pesticide residues in agricultural soils through organic amendments is an eco-friendly technique. Cypermethrin (CYP) and Chlorpyrifos (CPP) are widely used pesticides in peach growing orchards in Swat valley of Pakistan. The aim of the current study was to investigate the degradation behavior of CYP and CPP in soil by the application of different combination of organic/inorganic amendments. A total of 36 soil samples were used in the current incubation study which was collected from 4 peach orchards in district Swat, Khyber Pakhtunkhwa (KPK), Pakistan. Different amendments including urea, farm yard manure (FYM) and saprofil were applied alone and in various combinations. The initial concentrations of CYP and CPP in the tested soil was range from 0.94 to 4.8 mg kg−1 and 0.024 to 4.12 to mg kg−1. Soil samples were taken at 5, 15, 30 and 45 days after exposure to different treatments. The extraction of pesticides from soils was done through quick, easy, cheap, effective, rugged, and safe (QuEChERS) extraction method. Soils amended with urea, FYM and saprofil individually and in combinations significantly reduced the concentrations of CYP and CPP. However, the concentration of CYP (24.6) and CPP (27.0) in soil showed higher reduction through the application of FYM. While the concentrations of CYP and CPP were declined with the 5, 15, 30 and 45 days intervals, however, reduction at day 30 and 45 was faster for CYP (16.7 to 8.46) than CPP (20.2 to 12.3). At day 5 and 15, the CYP (42.5 to 30.7) was slightly lower than CPP (42.9 to 32.7).The highest half-life value (t ½) of CYP was in control treatment (32 days) and the shortest was soil amended with FYM (18.6 days). While the longest half-life value (t ½) of CPP was maximum in control treatment (42 days) and the minimum was in FYM (22 days). Based on our findings, it was concluded that soil application of FYM is recommended for the degradation of CYP and CPP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号