首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16714篇
  免费   1759篇
  国内免费   2133篇
  20606篇
  2024年   76篇
  2023年   428篇
  2022年   467篇
  2021年   684篇
  2020年   702篇
  2019年   804篇
  2018年   681篇
  2017年   594篇
  2016年   682篇
  2015年   677篇
  2014年   720篇
  2013年   1109篇
  2012年   688篇
  2011年   658篇
  2010年   561篇
  2009年   761篇
  2008年   813篇
  2007年   841篇
  2006年   873篇
  2005年   786篇
  2004年   749篇
  2003年   692篇
  2002年   672篇
  2001年   600篇
  2000年   546篇
  1999年   451篇
  1998年   361篇
  1997年   288篇
  1996年   323篇
  1995年   269篇
  1994年   280篇
  1993年   271篇
  1992年   238篇
  1991年   183篇
  1990年   161篇
  1989年   137篇
  1988年   109篇
  1987年   94篇
  1986年   77篇
  1985年   131篇
  1984年   85篇
  1983年   53篇
  1982年   54篇
  1981年   44篇
  1980年   24篇
  1979年   20篇
  1978年   16篇
  1977年   18篇
  1976年   12篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
871.
Armillaria root rot is a fungal disease that affects a wide range of trees and crops around the world. Despite being a widespread disease, little is known about the plant molecular responses towards the pathogenic fungi at the early phase of their interaction. With recent research highlighting the vital roles of metabolites in plant root–microbe interactions, we sought to explore the presymbiotic metabolite responses of Eucalyptus grandis seedlings towards Armillaria luteobuablina, a necrotrophic pathogen native to Australia. Using a metabolite profiling approach, we have identified threitol as one of the key metabolite responses in E. grandis root tips specific to A. luteobubalina that were not induced by three other species of soil-borne microbes of different lifestyle strategies (a mutualist, a commensalist, and a hemi-biotrophic pathogen). Using isotope labelling, threitol detected in the Armillaria-treated root tips was found to be largely derived from the fungal pathogen. Exogenous application of d- threitol promoted microbial colonization of E. grandis and triggered hormonal responses in root cells. Together, our results support a role of threitol as an important metabolite signal during eucalypt-Armillaria interaction prior to infection thus advancing our mechanistic understanding on the earliest stage of Armillaria disease development. Comparative metabolomics of eucalypt roots interacting with a range of fungal lifestyles identified threitol enrichment as a specific characteristic of Armillaria pathogenesis. Our findings suggest that threitol acts as one of the earliest fungal signals promoting Armillaria colonization of roots.  相似文献   
872.
Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (gs) can be ascribed to changes in guard cells functioning in amphistomateous leaves. gs was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where gs was at the highest. In contrast, genes encoding H+-ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+-vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day.  相似文献   
873.
Increasing evidences highlight the importance of DEAD-box RNA helicases in plant development and stress responses. In a previous study, we characterized the tomato res mutant (restored cell structure by salinity), showing chlorosis and development alterations that reverted under salt-stress conditions. Map-based cloning demonstrates that RES gene encodes SlDEAD39, a chloroplast-targeted DEAD-box RNA helicase. Constitutive expression of SlDEAD39 complements the res mutation, while the silencing lines had a similar phenotype than res mutant, which is also reverted under salinity. Functional analysis of res mutant proved SlDEAD39 is involved in the in vivo processing of the chloroplast, 23S rRNA, at the hidden break-B site, a feature also supported by in vitro binding experiments of the protein. In addition, our results show that other genes coding for chloroplast-targeted DEAD-box proteins are induced by salt-stress, which might explain the rescue of the res mutant phenotype. Interestingly, salinity restored the phenotype of res adult plants by increasing their sugar content and fruit yield. Together, these results propose an unprecedented role of a DEAD-box RNA helicase in regulating plant development and stress response through the proper ribosome and chloroplast functioning, which, in turn, represents a potential target to improve salt tolerance in tomato crops.  相似文献   
874.
Environmental adaptation of crops is essential for reliable agricultural production and an important breeding objective. Genebanks provide genetic variation for the improvement of modern varieties, but the selection of suitable germplasm is frequently impeded by incomplete phenotypic data. We address this bottleneck by combining a Focused Identification of Germplasm Strategy (FIGS) with core collection methodology to select soybean (Glycine max) germplasm for Central European breeding from a collection of >17,000 accessions. By focussing on adaptation to high-latitude cold regions, we selected an “environmental precore” of 3,663 accessions using environmental data and compared the Donor opulation of Environments (DPE) in Asia and the Target Population of Environments (TPE) in Central Europe in the present and 2070. Using single nucleotide polymorphisms, we reduced the precore into two diverse core collections of 183 and 366 accessions to serve as diversity panels for evaluation in the TPE. Genetic differentiation between precore and non-precore accessions revealed genomic regions that control maturity, and novel candidate loci for environmental adaptation, demonstrating the potential of diversity panels for studying adaptation. Objective-driven core collections have the potential to increase germplasm utilization for abiotic adaptation by breeding for a rapidly changing climate, or de novo adaptation of crops to expand cultivation ranges.  相似文献   
875.
Theories attempting to explain species coexistence in plant communities have argued in favour of species' capacities to occupy a multidimensional niche with spatial, temporal and biotic axes. We used the concept of hydrological niche segregation to learn how ecological niches are structured both spatially and temporally and whether small scale humidity gradients between adjacent niches are the main factor explaining water partitioning among tree species in a highly water-limited semiarid forest ecosystem. By combining geophysical methods, isotopic ecology, plant ecophysiology and anatomical measurements, we show how coexisting pine and oak species share, use and temporally switch between diverse spatially distinct niches by employing a set of functionally coupled plant traits in response to changing environmental signals. We identified four geospatial niches that turned into nine, when considering the temporal dynamics of the wetting/drying cycles in the substrate and the particular plant species adaptations to garner, transfer, store and use water. Under water scarcity, pine and oak exhibited water use segregation from different niches, yet under maximum drought when oak trees crossed physiological thresholds, niche overlap occurred. The identification of niches and mechanistic understanding of when and how species use them will help unify theories of plant coexistence and competition.  相似文献   
876.
Improving salinity tolerance in the most widely cultivated cereal, bread wheat (Triticum aestivum L.), is essential to increase grain yields on saline agricultural lands. A Portuguese landrace, Mocho de Espiga Branca accumulates up to sixfold greater leaf and sheath sodium (Na+) than two Australian cultivars, Gladius and Scout, under salt stress in hydroponics. Despite high leaf and sheath Na+ concentrations, Mocho de Espiga Branca maintained similar salinity tolerance compared to Gladius and Scout. A naturally occurring single nucleotide substitution was identified in the gene encoding a major Na+ transporter TaHKT1;5-D in Mocho de Espiga Branca, which resulted in a L190P amino acid residue variation. This variant prevents Mocho de Espiga Branca from retrieving Na+ from the root xylem leading to a high shoot Na+ concentration. The identification of the tissue-tolerant Mocho de Espiga Branca will accelerate the development of more elite salt-tolerant bread wheat cultivars.  相似文献   
877.
Many studies in South Africa have examined the impacts of alien plants on ecosystems, but none have assessed the impact of guava (Psidium guajava L.) invasion on soil properties. In this study, soils underneath guava-invaded sites were assessed to determine if they had different soil physico-chemical properties (pH, P, C, N, Na, K, Ca, Mg, moisture, penetration resistance, infiltration and water repellency) as compared to soils underneath uninvaded sites. Comparisons were made from three different sites over three autumn months. Results show that soil pH was significantly (p < 0.005) higher underneath uninvaded than guava-invaded sites. Soil P was three times higher underneath guava-invaded as compared to invaded sites. The soils collected underneath guava-invaded sites had a significantly (p < 0.001) higher moisture content and were less compact but more repellent than soils from the uninvaded sites. Infiltration rate was significantly (p < 0.001) higher in the uninvaded than the guava-invaded sites. The study concludes that guava invasion alters some soil properties, thus creating favourable conditions for its growth and making it potentially more invasive. From a management standpoint, guava removal is encouraged; however, given guava's socio-economic importance more research on cost and benefits is required.  相似文献   
878.
Positive species interactions are ubiquitous in natural communities, but the mechanisms through which they operate are poorly understood. One proposed mechanism is resource conversion – the conversion by a benefactor species of a resource from a resource state that is inaccessible to a potential beneficiary species into a resource state that is accessible. Such conversion often occurs as a byproduct of resource consumption, and sometimes in exchange for non-resource benefits to the benefactor species. At least five known classes of interactions, including both facilitative and mutualistic ones, may be classified as resource conversion interactions. We formulated a generalizable mathematical model for resource conversion interactions and examined two model variants that represent processing chain and nurse plant interactions. We examined the conditions under which these conformed to the stress-gradient hypothesis (SGH), which predicts increased interaction benefits in more stressful environments. These yielded four key insights: 1) resource conversion interactions can be positive (towards the resource recipient) only when facilitator-mediated resource conversion is more efficient than the baseline, spontaneous, facilitator-independent resource conversion; 2) the sign of resource conversion interaction outcomes never switches (e.g. from net positive to net negative) with changing levels of resource availability, when all other parameters are kept constant; 3) processing chain interactions at equilibrium can never be positive in a manner that conforms to the SGH; 4) nurse plant interactions can be positive and conform to the SGH, although the manner in which they do depends largely on how resource stress is defined, and the environmental supply rate of surface soil moisture. The first two insights are likely to be generalizable across all resource conversion interactions. The general agreement of the model with empirical studies suggest that resource conversion is the mechanism underlying the aforementioned interactions, and an ecologically meaningful way of classifying these previously unassociated positive species interactions.  相似文献   
879.
The use of medicinal plants for different therapeutic values is well documented in African continent. African diverse biodiversity hotspots provide a wide range of endemic species, which ensures a potential medicinal value. The feasible conservation approach and sustainable harvesting for the medicinal species remains a huge challenge. However, conservation approach through different biotechnological tools such as micropropagation, somatic embryogenesis, synthetic seed production, hairy root culture, molecular markers based study and cryopreservation of endemic African medicinal species is much crucial. In this review, an attempt has been made to provide different in vitro biotechnological approaches for the conservation of African medicinal species. The present review will be helpful in further technology development and deciding the priorities at decision-making levels for in vitro conservation and sustainable use of African medicinal species.  相似文献   
880.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号