首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   564篇
  免费   80篇
  国内免费   124篇
  768篇
  2024年   2篇
  2023年   15篇
  2022年   16篇
  2021年   4篇
  2020年   27篇
  2019年   21篇
  2018年   24篇
  2017年   24篇
  2016年   26篇
  2015年   32篇
  2014年   25篇
  2013年   26篇
  2012年   32篇
  2011年   31篇
  2010年   27篇
  2009年   37篇
  2008年   44篇
  2007年   50篇
  2006年   36篇
  2005年   37篇
  2004年   30篇
  2003年   21篇
  2002年   23篇
  2001年   16篇
  2000年   14篇
  1999年   16篇
  1998年   7篇
  1997年   5篇
  1996年   14篇
  1995年   6篇
  1994年   7篇
  1993年   5篇
  1992年   9篇
  1991年   4篇
  1989年   2篇
  1988年   7篇
  1987年   7篇
  1985年   3篇
  1984年   6篇
  1982年   5篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1972年   3篇
  1971年   2篇
排序方式: 共有768条查询结果,搜索用时 9 毫秒
31.
We compared carbon storage and fluxes in young and old ponderosa pine stands in Oregon, including plant and soil storage, net primary productivity, respiration fluxes, eddy flux estimates of net ecosystem exchange (NEE), and Biome‐BGC simulations of fluxes. The young forest (Y site) was previously an old‐growth ponderosa pine forest that had been clearcut in 1978, and the old forest (O site), which has never been logged, consists of two primary age classes (50 and 250 years old). Total ecosystem carbon content (vegetation, detritus and soil) of the O forest was about twice that of the Y site (21 vs. 10 kg C m?2 ground), and significantly more of the total is stored in living vegetation at the O site (61% vs. 15%). Ecosystem respiration (Re) was higher at the O site (1014 vs. 835 g C m?2 year?1), and it was largely from soils at both sites (77% of Re). The biological data show that above‐ground net primary productivity (ANPP), NPP and net ecosystem production (NEP) were greater at the O site than the Y site. Monte Carlo estimates of NEP show that the young site is a source of CO2 to the atmosphere, and is significantly lower than NEP(O) by c. 100 g C m?2 year?1. Eddy covariance measurements also show that the O site was a stronger sink for CO2 than the Y site. Across a 15‐km swath in the region, ANPP ranged from 76 g C m?2 year?1 at the Y site to 236 g C m?2 year?1 (overall mean 158 ± 14 g C m?2 year?1). The lowest ANPP values were for the youngest and oldest stands, but there was a large range of ANPP for mature stands. Carbon, water and nitrogen cycle simulations with the Biome‐BGC model suggest that disturbance type and frequency, time since disturbance, age‐dependent changes in below‐ground allocation, and increasing atmospheric concentration of CO2 all exert significant control on the net ecosystem exchange of carbon at the two sites. Model estimates of major carbon flux components agree with budget‐based observations to within ± 20%, with larger differences for NEP and for several storage terms. Simulations showed the period of regrowth required to replace carbon lost during and after a stand‐replacing fire (O) or a clearcut (Y) to be between 50 and 100 years. In both cases, simulations showed a shift from net carbon source to net sink (on an annual basis) 10–20 years after disturbance. These results suggest that the net ecosystem production of young stands may be low because heterotrophic respiration, particularly from soils, is higher than the NPP of the regrowth. The amount of carbon stored in long‐term pools (biomass and soils) in addition to short‐term fluxes has important implications for management of forests in the Pacific North‐west for carbon sequestration.  相似文献   
32.
Mitigating or slowing an increase in atmospheric carbon dioxide concentration ([CO2]) has been the focus of international efforts, most apparent with the development of the Kyoto Protocol. Sequestration of carbon (C) in agricultural soils is being advocated as a method to assist in meeting the demands of an international C credit system. The conversion of conventionally tilled agricultural lands to no till is widely accepted as having a large-scale sequestration potential. In this study, C flux measurements over a no-till corn/soybean agricultural ecosystem over 6 years were coupled with estimates of C release associated with agricultural practices to assess the net biome productivity (NBP) of this no-till ecosystem. Estimates of NBP were also calculated for the conventionally tilled corn/soybean ecosystem assuming net ecosystem exchange is C neutral. These measurements were scaled to the US as a whole to determine the sequestration potential of corn/soybean ecosystems, under current practices where 10% of agricultural land devoted to this ecosystem is no-tilled and under a hypothetical scenario where 100% of the land is not tilled. The estimates of this analysis show that current corn/soybean agriculture in the US releases ∼7.2 Tg C annually, with no-till sequestering ∼2.2 Tg and conventional-till releasing ∼9.4 Tg. The complete conversion of land area to no till might result in 21.7 Tg C sequestered annually, representing a net C flux difference of ∼29 Tg C. These results demonstrate that large-scale conversion to no-till practices, at least for the corn/soybean ecosystem, could potentially offset ca. 2% of annual US carbon emissions.  相似文献   
33.
覃光莲  杜国祯 《生态学杂志》2005,24(11):1303-1307
通过对高寒草甸植物群落中采集的群落数据进行分析,探讨了物种构成的相似性、统计平均、种群变异性和净协方差等机制对形成高寒草甸植物群落中多样性与群落地上生物量变异性之间关系的影响。结果表明,地上生物量的年际变异性随着多样性的增加而减小。物种构成相似性是多样性一变异性负关系产生的原因之一,而相似性与多样性之间并无显著相关关系;统计平均效应是另一个多样性一变异性负关系的主要决定者;净协方差效应、种群变异性对多样性一变异性关系产生的影响不显著或非常有限。  相似文献   
34.
Predictive margins with survey data   总被引:12,自引:0,他引:12  
Graubard BI  Korn EL 《Biometrics》1999,55(2):652-659
In the analysis of covariance, the display of adjusted treatment means allows one to compare mean (treatment) group outcomes controlling for different covariate distributions in the groups. Predictive margins are a generalization of adjusted treatment means to nonlinear models. The predictive margin for group r represents the average predicted response if everyone in the sample had been in group r. This paper discusses the use of predictive margins with complex survey data, where an important consideration is the choice of covariate distribution used to standardize the predictive margin. It is suggested that the textbook formula for the standard error of an adjusted treatment mean from the analysis of covariance may be inappropriate for applications involving survey data. Applications are given using data from the 1992 National Health Interview Survey (NHIS) and the Epidemiologic Followup Study to the first National Health and Nutrition Examination Survey (NHANES I).  相似文献   
35.
Based on theories of mire development and responses to a changing climate, the current role of mires as a net carbon sink has been questioned. A rigorous evaluation of the current net C-exchange in mires requires measurements of all relevant fluxes. Estimates of annual total carbon budgets in mires are still very limited. Here, we present a full carbon budget over 2 years for a boreal minerogenic oligotrophic mire in northern Sweden (64°11′N, 19°33′E). Data on the following fluxes were collected: land–atmosphere CO2 exchange (continuous Eddy covariance measurements) and CH4 exchange (static chambers during the snow free period); TOC (total organic carbon) in precipitation; loss of TOC, dissolved inorganic carbon (DIC) and CH4 through stream water runoff (continuous discharge measurements and regular C-concentration measurements). The mire constituted a net sink of 27±3.4 (±SD) g C m−2 yr−1 during 2004 and 20±3.4 g C m−2 yr−1 during 2005. This could be partitioned into an annual surface–atmosphere CO2 net uptake of 55±1.9 g C m−2 yr−1 during 2004 and 48±1.6 g C m−2 yr−1 during 2005. The annual NEE was further separated into a net uptake season, with an uptake of 92 g C m−2 yr−1 during 2004 and 86 g C m−2 yr−1 during 2005, and a net loss season with a loss of 37 g C m−2 yr−1 during 2004 and 38 g C m−2 yr−1 during 2005. Of the annual net CO2-C uptake, 37% and 31% was lost through runoff (with runoff TOC>DIC≫CH4) and 16% and 29% through methane emission during 2004 and 2005, respectively. This mire is still a significant C-sink, with carbon accumulation rates comparable to the long-term Holocene C-accumulation, and higher than the C-accumulation during the late Holocene in the region.  相似文献   
36.
华北平原冬小麦农田蒸散量   总被引:2,自引:3,他引:2  
以华北平原冬小麦农田为研究对象,采用涡度相关技术和热红外遥感技术,研究了不同环境条件下土壤含水量与农田蒸散量及作物冠层温度的关系.结果表明,冬小麦在农田郁闭(LAI≥3)、晴天和土壤相对含水量低于田间持水量65%的情况下,蒸发比值日变化正午前后出现相对较低且平稳的变化趋势.在晴天情况下,农田潜热通量与作物冠层温度日变化和季节变化均呈极显著的非线性相关关系,而冠气温差、农田相对蒸散量则与0~100 cm土层的土壤相对含水量密切相关.以13:30~14:00的平均冠层温度值Tc、日最高气温Ta max和日净辐射总量Rnd为统计数据,确立了冬小麦农田日蒸散量ETd (mm)估算简化模式参数.  相似文献   
37.
Exposure to extreme temperatures is increasingly likely to impose strong selection on many organisms in their natural environments. The ability of organisms to adapt to such selective pressures will be determined by patterns of genetic variation and covariation. Despite increasing interest in thermal adaptation, few studies have examined the extent to which the genetic covariance between traits might constrain thermal responses. Furthermore, it remains unknown whether sex‐specific genetic architectures will constrain responses to climatic selection. We used a paternal half‐sibling breeding design to examine whether sex‐specific genetic architectures and genetic covariances between traits might constrain evolutionary responses to warming climates in a population of Drosophila melanogaster. Our results suggest that the sexes share a common genetic underpinning for heat tolerance as indicated by a strong positive inter‐sexual genetic correlation. Further, we found no evidence in either of the sexes that genetic trade‐offs between heat tolerance and fitness will constrain responses to thermal selection. Our results suggest that neither trade‐offs, nor sex‐specific genetics, will significantly constrain an evolutionary response to climatic warming, at least in this population of D. melanogaster.  相似文献   
38.
The boreal biome exchanges large amounts of carbon (C) and greenhouse gases (GHGs) with the atmosphere and thus significantly affects the global climate. A managed boreal landscape consists of various sinks and sources of carbon dioxide (CO2), methane (CH4), and dissolved organic and inorganic carbon (DOC and DIC) across forests, mires, lakes, and streams. Due to the spatial heterogeneity, large uncertainties exist regarding the net landscape carbon balance (NLCB). In this study, we compiled terrestrial and aquatic fluxes of CO2, CH4, DOC, DIC, and harvested C obtained from tall‐tower eddy covariance measurements, stream monitoring, and remote sensing of biomass stocks for an entire boreal catchment (~68 km2) in Sweden to estimate the NLCB across the land–water–atmosphere continuum. Our results showed that this managed boreal forest landscape was a net C sink (NLCB = 39 g C m?2 year?1) with the landscape–atmosphere CO2 exchange being the dominant component, followed by the C export via harvest and streams. Accounting for the global warming potential of CH4, the landscape was a GHG sink of 237 g CO2‐eq m?2 year?1, thus providing a climate‐cooling effect. The CH4 flux contribution to the annual GHG budget increased from 0.6% during spring to 3.2% during winter. The aquatic C loss was most significant during spring contributing 8% to the annual NLCB. We further found that abiotic controls (e.g., air temperature and incoming radiation) regulated the temporal variability of the NLCB whereas land cover types (e.g., mire vs. forest) and management practices (e.g., clear‐cutting) determined their spatial variability. Our study advocates the need for integrating terrestrial and aquatic fluxes at the landscape scale based on tall‐tower eddy covariance measurements combined with biomass stock and stream monitoring to develop a holistic understanding of the NLCB of managed boreal forest landscapes and to better evaluate their potential for mitigating climate change.  相似文献   
39.
40.
孙成  江洪  周国模  杨爽  陈云飞 《生态学杂志》2013,24(10):2717-2724
2010年12月至2011年11月,利用涡度相关技术研究了我国亚热带(浙江)毛竹林生态系统的CO2通量,分析了毛竹林净生态系统交换量(NEE)、生态系统呼吸量(RE)和生态系统总交换量(GEE)的变化.结果表明: 研究期间,毛竹林各月的NEE均为负值,7月最大,为-99.33 g C·m-2,11月最小,仅-23.49 g C·m-2,其变化曲线呈双峰型.各月CO2通量平均日变化差异明显,9月最大,为-0.60 g CO2·m-2·s-1,1月最小,为-0.30 g CO2·m-2·s-1,且在NEE正负转换的时间点上呈明显的季节变化特征;全年RE呈单峰型变化,夏季最高、冬季最低,夜间RE与土壤温度呈极显著正相关.全年NEE、RE和GEE分别为-668.40、932.55和-1600.95 g C·m-2·a-1,NEE占GEE的41.8%.与其他生态系统相比,毛竹林的固碳能力极强.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号