首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10681篇
  免费   880篇
  国内免费   208篇
  2023年   236篇
  2022年   272篇
  2021年   440篇
  2020年   423篇
  2019年   583篇
  2018年   538篇
  2017年   408篇
  2016年   404篇
  2015年   407篇
  2014年   866篇
  2013年   1138篇
  2012年   614篇
  2011年   711篇
  2010年   527篇
  2009年   442篇
  2008年   513篇
  2007年   472篇
  2006年   364篇
  2005年   316篇
  2004年   237篇
  2003年   164篇
  2002年   123篇
  2001年   76篇
  2000年   58篇
  1999年   78篇
  1998年   88篇
  1997年   69篇
  1996年   47篇
  1995年   50篇
  1994年   45篇
  1993年   46篇
  1992年   45篇
  1991年   39篇
  1990年   29篇
  1989年   22篇
  1988年   30篇
  1987年   20篇
  1985年   129篇
  1984年   118篇
  1983年   72篇
  1982年   82篇
  1981年   72篇
  1980年   68篇
  1979年   55篇
  1978年   46篇
  1977年   38篇
  1976年   26篇
  1975年   23篇
  1974年   35篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
101.
The third phase of Wright's shifting-balance theory involves the export of adaptive gene combinations from one subpopulation to another. Previous results have demonstrated that this can occur at very low migration rates, but it has been argued that this simply reflects the ability of migration to overcome selection and fix any (even deleterious) alleles. Here, previous analyses are extended by concentrating on the critical balance between forward and reverse migration rates that still allows phase III to proceed. It is shown that selective advantage, dominance, recombination rate, and the number of loci all affect the ability of a genotype to invade and become fixed in a new subpopulation, but it is unlikely that phase III will occur in the absence of differential migration unless the invading genotype consists of a few dominant loci with a large selection advantage, spreading into a few populations of lower fitness. Therefore, as was envisioned by Wright, differential migration from more to less fit populations will be necessary for phase III to occur under most circumstances.  相似文献   
102.
103.
We extend our earlier work on the role of deleterious mutations in the extinction of obligately asexual populations. First, we develop analytical models for mutation accumulation that obviate the need for time-consuming computer simulations in certain ranges of the parameter space. When the number of mutations entering the population each generation is fairly high, the number of mutations per individual and the mean time to extinction can be predicted using classical approaches in quantitative genetics. However, when the mutation rate is very low, a fixation-probability approach is quite effective. Second, we show that an intermediate selection coefficient (s) minimizes the time to extinction. The critical value of s can be quite low, and we discuss the evolutionary implications of this, showing that increased sensitivity to mutation and loss of capacity for DNA repair can be selectively advantageous in asexual organisms. Finally, we consider the consequences of the mutational meltdown for the extinction of mitochondrial lineages in sexual species.  相似文献   
104.
Frozen samples of minimal change glomerulopathy (MCG), and of membranous, segmental and diffuse lupus glomerulonephritis (MGN, SGN, DLGN) were studied to assess the distribution of tenascin (Ten), and the extradomains A and B (EDA-and EDB-) and oncofetal (Onc-) isoforms of cellular fibronectin (cFn). Cryosections were immunostained by the ABC method with specific monoclonal antibodies. In MCG, mesangial Ten and EDA-cFn reactions were increased. In MGN, mesangial Ten and EDA-cFn staining was enhanced except in segmental scars; convincing reactions were seen in cases with membranous transformation; spikes stained strongly. In SGN, variably intense staining for Ten and all cFn isoforms was seen in glomerular necrosis, proliferation and crescents; parietal epithelium EDA-cFn staining was noted. In DLGN, strong and extensive mesangial Ten and EDA-cFn staining was seen as were focal EDB-and Onc-cFn reactions. Parietal cells with and without crescents stained variably with all Mabs. Obsolete glomeruli were unreactive save for rare periglomerular Ten rims. Interstitial inflammation and fibrosis in MGN, SGN and DLGN had moderate to strong Ten and EDA-cFn staining with rare traces of EDB-and Onc-cFn. We conclude that enhanced Ten and EDA-cFn is a potentially reversible response to glomerular injury whereas the expression of EDB-and Onc-cFn apparently result from necrosis and/or cellular proliferation which lead to scarring. And, while mesangial cells are the major source of these molecules, epithelial cells might also partake in their synthesis.  相似文献   
105.

Aim

Understanding cetacean species' distributions and population structure over space and time is necessary for effective conservation and management. Geographic differences in acoustic signals may provide a line of evidence for population-level discrimination in some cetacean species. We use acoustic recordings collected over broad spatial and temporal scales to investigate whether global variability in echolocation click peak frequency could elucidate population structure in Blainville's beaked whale (Mesoplodon densirostris), a cryptic species well-studied acoustically.

Location

North Pacific, Western North Atlantic and Gulf of Mexico.

Time period

2004–2021.

Major taxa studied

Blainville's beaked whale.

Methods

Passive acoustic data were collected at 76 sites and 150 cumulative years of data were analysed to extract beaked whale echolocation clicks. Using an automated detector and subsequent weighted network clustering on spectral content and interclick interval of clicks, we determined the properties of a primary cluster of clicks with similar characteristics per site. These were compared within regions and across ocean basins and evaluated for suitability as population-level indicators.

Results

Spectral averages obtained from primary clusters of echolocation clicks identified at each site were similar in overall shape but varied in peak frequency by up to 8 kHz. We identified a latitudinal cline, with higher peak frequencies occurring in lower latitudes.

Main conclusions

It may be possible to acoustically delineate populations of Blainville's beaked whales. The documented negative correlation between signal peak frequency and latitude could relate to body size. Body size has been shown to influence signal frequency, with lower frequencies produced by larger animals, which are subsequently more common in higher latitudes for some species, although data are lacking to adequately investigate this for beaked whales. Prey size and depth may shape frequency content of echolocation signals, and larger prey items may occur in higher latitudes, resulting in lower signal frequencies of their predators.  相似文献   
106.
Liquid–liquid phase separation (LLPS) is a complex physicochemical phenomenon mediated by multivalent transient weak interactions among macromolecules like polymers, proteins, and nucleic acids. It has implications in cellular physiology and disease conditions like cancer and neurodegenerative disorders. Many proteins associated with neurodegenerative disorders like RNA binding protein FUS (FUsed in Sarcoma), alpha-synuclein (α-Syn), TAR DNA binding protein 43 (TDP-43), and tau are shown to undergo LLPS. Recently, the tau protein responsible for Alzheimer's disease (AD) and other tauopathies is shown to phase separate into condensates in vitro and in vivo. The diverse noncovalent interactions among the biomolecules dictate the complex LLPS phenomenon. There are limited chemical tools to modulate protein LLPS which has therapeutic potential for neurodegenerative disorders. We have rationally designed cyclic dipeptide (CDP)-based small-molecule modulators (SMMs) by integrating multiple chemical groups that offer diverse chemical interactions to modulate tau LLPS. Among them, compound 1c effectively inhibits and dissolves Zn-mediated tau LLPS condensates. The SMM also inhibits tau condensate-to-fibril transition (tau aggregation through LLPS). This approach of designing SMMs of LLPS establishes a novel platform that has potential implication for the development of therapeutics for neurodegenerative disorders.  相似文献   
107.
During mate choice, receivers often assess the magnitude (duration, size, etc.) of signals that vary along a continuum and reflect variation in signaller quality. It is generally assumed that receivers assess this variation linearly, meaning each difference in signalling trait between signallers results in a commensurate change in receiver response. However, increasing evidence shows receivers can respond to signals non-linearly, for example through Weber's Law of proportional processing, where discrimination between stimuli is based on proportional, rather than absolute, differences in magnitude. We quantified mate preferences of female green swordtail fish, Xiphophorus hellerii, for pairs of males differing in body size. Preferences for larger males were better predicted by the proportional difference between males (proportional processing) than the absolute difference (linear processing). This demonstration of proportional processing of a visual signal implies that receiver perception may be an important mechanism selecting against the evolution of ever-larger signalling traits.  相似文献   
108.
帕金森病是常见的神经退行性疾病,其发病原因至今尚未明确,目前的治疗方法价格昂贵、效果差且副作用大。帕金森病患者常见胃肠道功能障碍,帕金森病和肠道菌群之间的关联已得到实验证实,患者有望通过益生菌改善肠道菌群达到治疗的目的。工程益生菌的出现使得人们可以按照自己的意愿改造益生菌,提高其稳定性和靶向性,展现出其特有的应用潜力。本文将从益生菌治疗帕金森病的研究现状出发,阐述益生菌治疗帕金森病的可能机制,进一步分析工程益生菌治疗帕金森病的可行性,为该疾病的安全治疗提供新的思路。  相似文献   
109.
The characteristic maximum lifespan varies enormously across animal species from a few hours to hundreds of years. This argues that maximum lifespan, and the ageing process that itself dictates lifespan, are to a large extent genetically determined. Although controversial, this is supported by firm evidence that semelparous species display evolutionarily programmed ageing in response to reproductive and environmental cues. Parabiosis experiments reveal that ageing is orchestrated systemically through the circulation, accompanied by programmed changes in hormone levels across a lifetime. This implies that, like the circadian and circannual clocks, there is a master ‘clock of age’ (circavital clock) located in the limbic brain of mammals that modulates systemic changes in growth factor and hormone secretion over the lifespan, as well as systemic alterations in gene expression as revealed by genomic methylation analysis. Studies on accelerated ageing in mice, as well as human longevity genes, converge on evolutionarily conserved fibroblast growth factors (FGFs) and their receptors, including KLOTHO, as well as insulin-like growth factors (IGFs) and steroid hormones, as key players mediating the systemic effects of ageing. Age-related changes in these and multiple other factors are inferred to cause a progressive decline in tissue maintenance through failure of stem cell replenishment. This most severely affects the immune system, which requires constant renewal from bone marrow stem cells. Age-related immune decline increases risk of infection whereas lifespan can be extended in germfree animals. This and other evidence suggests that infection is the major cause of death in higher organisms. Immune decline is also associated with age-related diseases. Taking the example of Alzheimer's disease (AD), we assess the evidence that AD is caused by immunosenescence and infection. The signature protein of AD brain, Aβ, is now known to be an antimicrobial peptide, and Aβ deposits in AD brain may be a response to infection rather than a cause of disease. Because some cognitively normal elderly individuals show extensive neuropathology, we argue that the location of the pathology is crucial – specifically, lesions to limbic brain are likely to accentuate immunosenescence, and could thus underlie a vicious cycle of accelerated immune decline and microbial proliferation that culminates in AD. This general model may extend to other age-related diseases, and we propose a general paradigm of organismal senescence in which declining stem cell proliferation leads to programmed immunosenescence and mortality.  相似文献   
110.
Type 2 diabetes (T2D) and Alzheimer's disease (AD) are two global epidemics that share several metabolic defects, such as insulin resistance, impaired glucose metabolism, and mitochondrial defects. Importantly, strong evidence demonstrates that T2D significantly increases the risk of cognitive decline and dementia, particularly AD. Here, we provide an overview of the metabolic defects that characterize and link both pathologies putting the focus on mitochondria. The biomarker potential of mitochondrial components and the therapeutic potential of some drugs that target and modulate mitochondria are also briefly discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号