首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6855篇
  免费   303篇
  国内免费   161篇
  7319篇
  2025年   12篇
  2024年   92篇
  2023年   145篇
  2022年   150篇
  2021年   212篇
  2020年   259篇
  2019年   369篇
  2018年   287篇
  2017年   373篇
  2016年   369篇
  2015年   287篇
  2014年   312篇
  2013年   524篇
  2012年   197篇
  2011年   330篇
  2010年   222篇
  2009年   384篇
  2008年   398篇
  2007年   345篇
  2006年   326篇
  2005年   228篇
  2004年   268篇
  2003年   185篇
  2002年   143篇
  2001年   134篇
  2000年   105篇
  1999年   88篇
  1998年   96篇
  1997年   72篇
  1996年   68篇
  1995年   66篇
  1994年   52篇
  1993年   60篇
  1992年   53篇
  1991年   28篇
  1990年   13篇
  1989年   7篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   8篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   1篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   3篇
  1976年   2篇
排序方式: 共有7319条查询结果,搜索用时 0 毫秒
31.
The driving forces behind the folding processes of integral membrane proteins after insertion into the bilayer, is currently under debate. The M2 protein from the influenza A virus is an ideal system to study lateral association of transmembrane helices. Its proton selective channel is essential for virus functioning and a target of the drug amantadine. A 25 residue transmembrane fragment of M2, M2TM, forms a four-helix bundle in vivo and in various detergents and phospholipid bilayers. Presented here are the energetic consequences for mutations made to the helix/helix interfaces of the M2TM tetramer. Analytical ultracentrifugation has been used to determine the effect of ten single-site mutations, to either alanine or phenylalanine, on the oligomeric state and the free energy of M2TM in the absence and the presence of amantadine. It was expected that many of these mutations would perturb the M2TM stability and tetrameric integrity. Interestingly, none of the mutations destabilize tetramerization. This finding suggests that M2 sacrifices stability to preserve its functions, which require rapid and specific interchange between distinct conformations involved in gating and proton conduction. Mutations might therefore restrict the full range of conformations by stabilizing a given native or non-native conformational state. In order to assess one specific conformation of the tetramer, we measured the binding of amantadine to the resting state of the channel, and examined the overall free energy of assembly of the amantadine bound tetramer. All of the mutations destabilized amantadine binding or were isoenergetic. We also find that large to small residue changes destabilize the amantadine bound tetramer whereas mutations to side-chains of similar volume stabilize this conformation. A structural model of the amantadine bound state of M2TM was generated using a novel protocol that optimizes a structure for an ensemble of neutral and disruptive mutations. The model structure is consistent with the mutational data.  相似文献   
32.
Meentemeyer  Ross K.  Moody  Aaron  Franklin  Janet 《Plant Ecology》2001,156(1):19-41
We examine the degree to which landscape-scale spatial patterns of shrub-species abundance in California chaparral reflect topographically mediated environmental conditions, and evaluate whether these patterns correspond to known ecophysiological plant processes. Regression tree models are developed to predict spatial patterns in the abundance of 12 chaparral shrub and tree species in three watersheds of the Santa Ynez Mountains, California. The species response models are driven by five variables: average annual soil moisture, seasonal variability in soil moisture, average annual photosynthetically active radiation, maximum air temperature over the dry season (May–October), and substrate rockiness. The energy and moisture variables are derived by integrating high resolution (10 m) digital terrain data and daily climate observations with a process-based hydro-ecological model (RHESSys). Field-sampled data on species abundance are spatially integrated with the distributed environmental variables for developing and evaluating the species response models.The species considered are differentially distributed along topographically-mediated environmental gradients in ways that are consistent with known ecophysiological processes. Spatial patterns in shrub abundance are most strongly associated with annual soil moisture and solar radiation. Substrate rockiness is also closely associated with the establishment of certain species, such as Adenostoma fasciculatum and Arctostaphylos glauca. In general, species that depend on fire for seedling recruitment (e.g., Ceanothous megacarpus) occur at high abundance in xeric environments, whereas species that do not depend on fire (e.g., Heteromeles arbutifolia) occur at higher abundance in mesic environments. Model performance varies between species and is related to life history strategies for regeneration. The scale of our analysis may be less effective at capturing the processes that underlie the establishment of species that do not depend on fire for recruitment. Analysis of predication errors in relation to environmental conditions and the abundance of potentially competing species suggest factors not explicitly considered in the species response models.  相似文献   
33.
    
Chagas disease, also called American trypanosomiasis, is a parasitic disease caused by Trypanosoma cruzi (T. cruzi). Recent findings have underscored the abundance of the causative organism, (T. cruzi), especially in the southern tier states of the US and the risk burden for the rural farming communities there. Due to a lack of safe and effective drugs, there is an urgent need for novel therapeutic options for treating Chagas disease. We report here our first scientific effort to pursue a novel drug design for treating Chagas disease via the targeting of T. cruzi tubulin. First, the anti T. cruzi tubulin activities of five naphthoquinone derivatives were determined and correlated to their anti-trypanosomal activities. The correlation between the ligand activities against the T. cruzi organism and their tubulin inhibitory activities was very strong with a Pearson’s r value of 0.88 (P value <0.05), indicating that this class of compounds could inhibit the activity of the trypanosome organism via T. cruzi tubulin polymerization inhibition. Subsequent molecular modeling studies were carried out to understand the mechanisms of the anti-tubulin activities, wherein, the homology model of T. cruzi tubulin dimer was generated and the putative binding site of naphthoquinone derivatives was predicted. The correlation coefficient for ligand anti-tubulin activities and their binding energies at the putative pocket was found to be r = 0.79, a high correlation efficiency that was not replicated in contiguous candidate pockets. The homology model of T. cruzi tubulin and the identification of its putative binding site lay a solid ground for further structure based drug design, including molecular docking and pharmacophore analysis. This study presents a new opportunity for designing potent and selective drugs for Chagas disease.  相似文献   
34.
    
Most of the pre-mRNAs in the eukaryotic cell are comprised of protein-coding exons and non-protein-coding introns. The introns are removed and the exons are ligated together, or spliced, by a large, macromolecular complex known as the spliceosome. This RNA-protein assembly is made up of five uridine-rich small nuclear RNAs (U1-, U2-, U4-, U5- and U6-snRNA) as well over 300 proteins, which form small nuclear ribonucleoprotein particles (snRNPs). Initial recognition of the 5′ exon/intron splice site is mediated by the U1 snRNP, which is composed of the U1 snRNA as well as at least ten proteins. By combining structural informatics tools with the available biochemical and crystallographic data, we attempted to simulate a complete, three dimensional U1 snRNP from the silk moth, Bombyx mori. Comparison of our model with empirically derived crystal structures and electron micrographs pinpoints both the strengths and weaknesses in the in silico determination of macromolecular complexes. One of the most striking differences between our model and experimentally generated structures is in the positioning of the U1 snRNA stem-loops. This highlights the continuing difficulties in generating reliable, complex RNA structures; however, three-dimensional modeling of individual protein subunits by threading provided models of biological significance and the use of both automated and manual docking strategies generated a complex that closely reflects the assembly found in nature. Yet, without utilizing experimentally-derived contacts to select the most likely docking scenario, ab initio docking would fall short of providing a reliable model. Our work shows that the combination of experimental data with structural informatics tools can result in generation of near-native macromolecular complexes.  相似文献   
35.
36.
37.
38.
    
The importance of plant–soil feedback (PSF) has long been recognized, but the current knowledge on PSF patterns and the related mechanisms mainly stems from laboratory experiments. We aimed at addressing PSF effects on community performance and their determinants using an invasive forb Solidago canadensis. To do so, we surveyed 81 pairs of invaded versus uninvaded plots, collected soil samples from these pairwise plots, and performed an experiment with microcosm plant communities. The magnitudes of conditioning soil abiotic properties and soil biotic properties by S. canadensis were similar, but the direction was opposite; altered abiotic and biotic properties influenced the production of subsequent S. canadensis communities and its abundance similarly. These processes shaped neutral S. canadensis–soil feedback effects at the community level. Additionally, the relative dominance of S. canadensis increased with its ability of competitive suppression in the absence and presence of S. canadensis–soil feedbacks, and S. canadensis‐induced decreases in native plant species did not alter soil properties directly. These findings provide a basis for understanding PSF effects and the related mechanisms in the field conditions and also highlight the importance of considering PSFs holistically.  相似文献   
39.
    
Habitat suitability index (HSI) models rarely characterize the uncertainty associated with their estimates of habitat quality despite the fact that uncertainty can have important management implications. The purpose of this paper was to explore the use of Bayesian belief networks (BBNs) for representing and propagating 3 types of uncertainty in HSI models—uncertainty in the suitability index relationships, the parameters of the HSI equation, and measurement of habitat variables (i.e., model inputs). I constructed a BBN–HSI model, based on an existing HSI model, using Netica™ software. I parameterized the BBN's conditional probability tables via Monte Carlo methods, and developed a discretization scheme that met specifications for numerical error. I applied the model to both real and dummy sites in order to demonstrate the utility of the BBN–HSI model for 1) determining whether sites with different habitat types had statistically significant differences in HSI, and 2) making decisions based on rules that reflect different attitudes toward risk—maximum expected value, maximin, and maximax. I also examined effects of uncertainty in the habitat variables on the model's output. Some sites with different habitat types had different values for E[HSI], the expected value of HSI, but habitat suitability was not significantly different based on the overlap of 90% confidence intervals for E[HSI]. The different decision rules resulted in different rankings of sites, and hence, different decisions based on risk. As measurement uncertainty in habitat variables increased, sites with significantly different (α = 0.1) E[HSI] became statistically more similar. Incorporating uncertainty in HSI models enables explicit consideration of risk and more robust habitat management decisions. © 2012 The Wildlife Society.  相似文献   
40.
    
The interactions between estradiol and two carrier proteins, i.e. human serum albumin (HSA) and holo-transferrin (HTF) in aqueous solution at pH = 7.4 were studied by three-dimensional fluorescence emission spectroscopy, isothermal titration calorimetry (ITC), zeta-potential, resonance light-scattering and molecular modeling. Extensive fluorescence quenching was observed throughout the interaction between the drug and both proteins. Moreover, conformational changes were determined by observing the rearrangement of Trp residues during binding of estradiol with HSA and HTF at different concentrations. ITC experiments revealed that, in the presence of estradiol, both van der Waals forces and hydrogen bonding became predominant. In addition, other binding parameters such as enthalpy and entropy changes were determined by the zeta potential method. Molecular modeling suggested that estradiol was situated within sub-domain IB sited in the hydrophobic cluster in Site I, whereas the drug was located in the N-terminal of HTF where it was hydrogen bonded with Ala 670.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号