首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9611篇
  免费   1530篇
  国内免费   2386篇
  2024年   105篇
  2023年   366篇
  2022年   285篇
  2021年   269篇
  2020年   503篇
  2019年   535篇
  2018年   597篇
  2017年   601篇
  2016年   622篇
  2015年   569篇
  2014年   586篇
  2013年   701篇
  2012年   454篇
  2011年   548篇
  2010年   383篇
  2009年   543篇
  2008年   524篇
  2007年   531篇
  2006年   510篇
  2005年   427篇
  2004年   380篇
  2003年   357篇
  2002年   364篇
  2001年   288篇
  2000年   276篇
  1999年   243篇
  1998年   214篇
  1997年   192篇
  1996年   178篇
  1995年   164篇
  1994年   169篇
  1993年   118篇
  1992年   136篇
  1991年   97篇
  1990年   78篇
  1989年   82篇
  1988年   69篇
  1987年   56篇
  1986年   58篇
  1985年   66篇
  1984年   39篇
  1983年   27篇
  1982年   51篇
  1981年   31篇
  1980年   31篇
  1979年   27篇
  1978年   23篇
  1977年   15篇
  1976年   17篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 171 毫秒
11.
12.
13.
14.
Dynamic Light Regulation of Photosynthesis (A Review)   总被引:9,自引:7,他引:2  
Regulatory reactions providing the photosynthetic apparatus with the ability to respond to variations of irradiance by changes in activities of the light and the dark stages of photosynthesis within a time range of seconds and minutes are considered in the review. At the light stage, such reactions are related to the changes in both distribution of light energy between two photosystems and probability of nonphotochemical dissipation of absorbed quanta in PSI and PSII. These regulatory reactions operate in a negative feedback mode, thus avoiding overreduction of electron transport chain and minimizing the probability of generation of reactive oxygen species. The crucial role in preventing the generation of reactive oxygen species belongs to dynamic regulation of electron transport activity despite the presence of complex system of their detoxification in chloroplasts. In dark reactions of Calvin cycle, the regulatory responses involve a positive feedback principle being related to redox regulation of activities of several enzymes, which is sensitive to the reduction status of PSI acceptor side. The complex of regulatory reactions based on negative and positive feedback principles provides prolonged functioning of a chloroplast and high stability of photosynthetic activity under various light conditions.  相似文献   
15.
We investigated the effects of maturation on the dynamic body sways of healthy girls. Prepubertal and postpubertal girls practising professional physical activities requiring a good ability to maintain equilibrium (acrobats and dancers) were asked to stand on a free seesaw platform and the results compared to those for untrained age-matched girls. This platform (stabilometer) allows self-induced body sways. Stabilograms were obtained by a double integration of the angular acceleration from the recordings of the platform sways made with an accelerometer. Fast Fourier transform processing of stabilograms allowed spectral frequency analysis. The total spectrum energy and the energies of three frequency bands (0–0.5 Hz, 0.5–2 Hz, 2–20 Hz) were determined. ANOVA showed that, for all groups of different equilibrium activity and independent of visual input, prepubertal girls had higher energy values than postpubertal girls in the 0- to 0.5-Hz band whereas the opposite was true for 0.5- to 2-Hz band. Ballet dancers were more dependent than acrobats on visual inputs for the regulation of their postural control but were less dependent than untrained girls at both ages. Maturation seemed to shift body sways towards higher frequencies and the utilization of the cues of postural control was different according to the type of equilibrium activity practised by the subjects. Accepted: 7 February 1997  相似文献   
16.
Human cognitive ability shows consistent, positive associations with fitness components across the life-course. Underlying genetic variation should therefore be depleted by selection, which is not observed. Genetic variation in general cognitive ability (intelligence) could be maintained by a mutation–selection balance, with rare variants contributing to its genetic architecture. This study examines the association between the total number of rare stop-gain/loss, splice and missense exonic variants and cognitive ability in childhood and old age in the same individuals. Exome array data were obtained in the Lothian Birth Cohorts of 1921 and 1936 (combined N = 1596). General cognitive ability was assessed at age 11 years and in late life (79 and 70 years, respectively) and was modelled against the total number of stop-gain/loss, splice, and missense exonic variants, with minor allele frequency less than or equal to 0.01, using linear regression adjusted for age and sex. In both cohorts and in both the childhood and late-life models, there were no significant associations between rare variant burden in the exome and cognitive ability that survived correction for multiple testing. Contrary to our a priori hypothesis, we observed no evidence for an association between the total number of rare exonic variants and either childhood cognitive ability or late-life cognitive ability.  相似文献   
17.
The effect of temperature on the maximum specific growth rate and the cell yield was studied during cultivation of two bacterial strains (LPM-4 and Pseudomonas sp. LPM-410) on EDTA under unlimited cell growth conditions in a pH-auxostat. Both strains displayed linear dependence of reciprocal biomass yield against reciprocal specific growth rate, from which the values of rate of substrate expenditure for cell maintenance and the “maximum” yield (i.e., hypothetical yield without cell maintenance processes) were estimated. Analysis of the maximum yield values based on mass–energy balance theory suggested that oxidation of the carboxylic acid side chains of EDTA by a monooxygenase had zero or low energetic efficiency. An Arrhenius equation with different values of Arrhenius parameters within different temperature ranges gave a good fit with the temperature dependence of both growth rate and biomass yield. Specific growth rates of both strains showed a more pronounced temperature dependence than did the cell yields. A possible kinetic mechanism was suggested which might be responsible for the modes of the temperature dependences of specific growth rate and yield that were found. The mechanism is based on a hypothetical key substance governing the metabolic flows, which is formed in a zero-order reaction and destroyed in a first-order reaction, both rate constants depending on temperature according to the Arrhenius law.  相似文献   
18.
Size-related changes in hydraulic architecture, carbon allocation and gas exchange of Sclerolobium paniculatum (Leguminosae), a dominant tree species in Neotropical savannas of central Brazil (Cerrado), were investigated to assess their potential role in the dieback of tall individuals. Trees greater than ∼6-m-tall exhibited more branch damage, larger numbers of dead individuals, higher wood density, greater leaf mass per area, lower leaf area to sapwood area ratio (LA/SA), lower stomatal conductance and lower net CO2 assimilation than small trees. Stem-specific hydraulic conductivity decreased, while leaf-specific hydraulic conductivity remained nearly constant, with increasing tree size because of lower LA/SA in larger trees. Leaves were substantially more vulnerable to embolism than stems. Large trees had lower maximum leaf hydraulic conductance ( K leaf) than small trees and all tree sizes exhibited lower K leaf at midday than at dawn. These size-related adjustments in hydraulic architecture and carbon allocation apparently incurred a large physiological cost: large trees received a lower return in carbon gain from their investment in stem and leaf biomass compared with small trees. Additionally, large trees may experience more severe water deficits in dry years due to lower capacity for buffering the effects of hydraulic path-length and soil water deficits.  相似文献   
19.
《Plant Ecology & Diversity》2013,6(2-3):227-241
Background: Although forest floor forms a large biomass pool in forested peatlands, little is known about its role in ecosystem carbon (C) dynamics.

Aim: We aimed to quantify forest floor photosynthesis (P FF) and respiration (R FF) as a part of overall C dynamics in a drained peatland forest in southern Finland.

Methods: We measured net forest floor CO2 exchange with closed chambers and reconstructed seasonal CO2 exchange in the prevailing plant communities.

Results: The vegetation was a mosaic of plant communities that differed in CO2 exchange dynamics. The reconstructed growing season P FF was highest in the Sphagnum community and lowest in the feather moss communities. On the contrary, R FF was highest in the feather moss communities and lowest in the Sphagnum community. CO2 assimilated by the forest floor was 20–30% of the total CO2 assimilated by the forest. The forest floor was a net CO2 source to the atmosphere, because respiration from ground vegetation, tree roots and decomposition of soil organic matter exceeded the photosynthesis of ground vegetation.

Conclusions: Tree stand dominates C fluxes in drained peatland forests. However, forest floor vegetation can have a noticeable role in the C cycle of peatlands drained for forestry. Similarly to natural mires, Sphagnum moss-dominated communities were the most efficient assimilators of C.  相似文献   
20.
Forest age structure is one of the main indicators of biodiversity in temperate and boreal forests worldwide. This indicator was mainly chosen for the conservation of a subset of rare or sensitive species related to the oldest age classes, not to capture variability across the entire biodiversity spectrum, but is often considered as such. In this study, we analysed alpha and beta diversity in temporary plots of western Quebec, Canada, to consider biodiversity indicators complementary to existing forest age structure targets. Our analysis revealed that considered individually, stand characteristics such as cover type and height are better predictors of changes in site-level contribution to tree beta diversity than age. We also show that plots belonging to different age classes can be similar in terms of tree alpha diversity. Height class was found to have a more significant impact on tree alpha diversity than expected: height was more important than age in coniferous forests, and in deciduous and mixedwood stands it frequently complemented age in explaining the observed diversity patterns. Our results suggest that forest age structure target levels should not be used as the sole indicator of ecosystem sustainability, and that some mature secondary stands can provide significant contributions to biodiversity. We propose that more efficient trade-offs between forest exploitation, ecosystem functioning and environmental conservation can be attained if: (i) forest age structure targets are complemented by cover type and stand height; or (ii) complementary biodiversity indicators of ecosystem sustainability are implemented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号