首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1593篇
  免费   210篇
  国内免费   662篇
  2024年   7篇
  2023年   42篇
  2022年   51篇
  2021年   45篇
  2020年   54篇
  2019年   61篇
  2018年   54篇
  2017年   127篇
  2016年   171篇
  2015年   129篇
  2014年   99篇
  2013年   104篇
  2012年   57篇
  2011年   77篇
  2010年   69篇
  2009年   134篇
  2008年   122篇
  2007年   118篇
  2006年   104篇
  2005年   97篇
  2004年   112篇
  2003年   87篇
  2002年   75篇
  2001年   49篇
  2000年   34篇
  1999年   41篇
  1998年   45篇
  1997年   44篇
  1996年   24篇
  1995年   27篇
  1994年   30篇
  1993年   18篇
  1992年   26篇
  1991年   29篇
  1990年   15篇
  1989年   14篇
  1988年   10篇
  1987年   10篇
  1986年   7篇
  1985年   6篇
  1984年   4篇
  1983年   6篇
  1982年   3篇
  1981年   2篇
  1980年   4篇
  1979年   4篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1956年   3篇
排序方式: 共有2465条查询结果,搜索用时 15 毫秒
101.
The Grassland Biome is currently one of the most threatened biomes in South Africa and is in dire need of a biomonitoring protocol. The components of ecological integrity in these ecosystems are, however, too diverse and time-consuming to measure scrupulously. It is therefore necessary to develop a set of grassland indicators that are efficient and rapid in their assessment of grassland ecosystem integrity. The South African Grassland Scoring System (SAGraSS), based on the grassland insect community, is such a suggested indicator. The present study is the first to investigate the applicability and rapidity of this proposed method. Although SAGraSS scores correlated significantly with Ecological Index values (the most commonly used index by which veld condition is evaluated in central South Africa), the method proved to be tedious and the identification of insects taxing. We offer a number of changes to make the SAGraSS method a more rapid method of assessment.  相似文献   
102.
This article presents mass balances and a detailed life cycle assessment (LCA) for energy and greenhouse gases (GHGs) of a simulated microalgae biodiesel production system. Key parameters of the system include biomass productivity of 16 and 25 g m?2 day?1 and lipid content of algae of 40% and 25% for low and normal nitrogen conditions respectively. Based on an oil extraction efficiency from wet biomass of 73.6% and methane yields from anaerobically digested lipid‐extracted biomass of 0.31 to 0.34 l per gram of volatile solids, the mass balance shows that recycling growth media and recovering nutrients from residual biomass through anaerobic digestion can reduce the total demand for nitrogen by 66% and phosphorus by 90%. Freshwater requirements can be reduced by 89% by recirculating growth media, and carbon requirements reduced by 40% by recycling CO2 from biogas combustion, for normal nitrogen conditions. A variety of technology options for each step of the production process and allocation methods for coproducts used outside the production system are evaluated using LCA. Extensive sensitivity and scenario analysis is also performed to provide better understanding of uncertainty associated with results. The best performing scenario consists of normal nitrogen cultivation conditions, bioflocculation and dissolved air flotation for harvesting, centrifugation for dewatering, wet extraction with hexane, transesterification for biodiesel production, and anaerobic digestion of biomass residual, which generates biogas used in a combined heat and power unit for energy recovery. This combination of technologies and operating conditions results in life cycle energy requirements and GHG emissions of 1.02 MJ and 71 g CO2‐equivalent per MJ of biodiesel, with cultivation and oil extraction dominating energy use and emissions. Thus, even under optimistic conditions, the near‐term performance of this biofuel pathway does not achieve the significant reductions in life cycle GHG emissions hoped for from second‐generation biofuel feedstocks.  相似文献   
103.
In the past decades, it has been debated whether ecological niche should be conserved among closely related species (phylogenetic niche conservatism, PNC) or largely divergent (traditional ecological niche theory and ecological speciation) and whether niche specialist and generalist might remain in equilibrium or niche generalist could not appear. In this study, we employed morphological traits to describe ecological niche and test whether different niche dimensions exhibit disparate evolutionary patterns. We conducted our analysis on three Rhinogobio fish species (R. typus, R. cylindricus, and R. ventralis) from the upper Yangtze River, China. Among the 32 measured morphological traits except body length, PCA extracted the first four principal components with their loading scores >1.000. To find the PNC among species, Mantel tests were conducted with the Euclidean distances calculated from the four principal components (representing different niche dimensions) against the pairwise distances calculated from mitochondrial cytochrome b sequence variations. The results showed that the second and the third niche dimension, both related to swimming ability and behavior, exhibited phylogenetic conservatism. Further comparison on niche breadth among these three species revealed that the fourth dimension of R. typus showed the greatest width, indicating that this dimension exhibited niche generalism. In conclusion, our results suggested that different niche dimensions could show different evolutionary dynamic patterns: they may exhibit PNC or not, and some dimensions may evolve generalism.  相似文献   
104.
Despite benefits for precision, ecologists rarely use informative priors. One reason that ecologists may prefer vague priors is the perception that informative priors reduce accuracy. To date, no ecological study has empirically evaluated data‐derived informative priors' effects on precision and accuracy. To determine the impacts of priors, we evaluated mortality models for tree species using data from a forest dynamics plot in Thailand. Half the models used vague priors, and the remaining half had informative priors. We found precision was greater when using informative priors, but effects on accuracy were more variable. In some cases, prior information improved accuracy, while in others, it was reduced. On average, models with informative priors were no more or less accurate than models without. Our analyses provide a detailed case study on the simultaneous effect of prior information on precision and accuracy and demonstrate that when priors are specified appropriately, they lead to greater precision without systematically reducing model accuracy.  相似文献   
105.
Linking adaptive divergence to hybrid unfitness is necessary to understand the ecological factors contributing to reproductive isolation and speciation. To date, this link has been demonstrated in few model systems, most of which encompass ecotypes that occupy relatively early stages in the speciation process. Here we extend these studies by assessing how host‐plant adaptation conditions hybrid fitness in the pea aphid, Acyrthosiphon pisum. We made crosses between and within five pea aphid biotypes adapted to different host plants and representing various stages of divergence within the complex. Performance of F1 hybrids and nonhybrids was assessed on a “universal” host that is favorable to all pea aphid biotypes in laboratory conditions. Although hybrids performed equally well as nonhybrids on the universal host, their performance was much lower than nonhybrids on the natural hosts of their parental populations. Hence, hybrids, rather than being intrinsically deficient, are maladapted to their parents’ hosts. Interestingly, the impact of this maladaptation was stronger in certain hybrids from crosses involving the most divergent biotype, suggesting that host‐dependent postzygotic isolation has continued to evolve late in divergence. Even though host‐independent deficiencies are not excluded, hybrid maladaptation to parental hosts supports the hypothesis of ecological speciation in this complex.  相似文献   
106.
107.
The macrophyte vegetation of 51 ponds situated in the Duero river basin on the Northern Iberian Plateau was studied with the aim of selecting metrics that responded clearly to perturbation and that should be included in a multimetric index for assessing the ecological condition (expression of the quality of the structure and functioning of aquatic ecosystems associated with surface waters) of Mediterranean ponds. Furthermore, the specific response of metrics to the total phosphorus (TP) concentration was also investigated because of agricultural activities, which usually increase the concentration of nutrients in aquatic systems, are one of the principal types of impairment affecting ponds in the Duero basin.A total of 19 metrics representing several aspects of the structure of macrophyte communities (cover, richness, diversity) were selected as potential metrics.The strong overlap which was observed for macrophyte metrics between classes of ecological conditions (bad, poor, moderate, good, best available) and TP concentrations (>600, 600-300, 300-100, 100-50, <50 μg L−1 TP) constitutes a major problem in defining and separating these classes. For this reason, Mann-Whitney U-test and discrimination efficiency were carried out to determine which of the measures best discriminated between slightly impaired sites (ponds in good or best available condition) and perturbed ponds (ponds in moderate, poor or bad condition). Most of the metrics showed significant differences (p < 0.05) between slightly impaired and perturbed ponds. However, only total cover and hydrophyte richness, which had the highest discrimination efficiency (>78%), showed no inter-quartile overlap (25th-75th percentile) between the two ecological classes. For these reasons, both total cover and hydrophyte richness were selected for the implementation of a multimetric index able to discriminate between slightly impaired and degraded Mediterranean flatland ponds.Currently, eutrophication is considered the main pressure on lakes. However, macrophyte metrics were far less sensitive to TP concentration than to ecological condition changes. This shows that other pressures are also of considerable importance. Thus, the definition of the ecological condition of lakes using macrophytes should not be based only on responses to eutrophication pressure, as has been done in some European countries.  相似文献   
108.
Three years after a river restoration scheme in the Syr Valley (Luxembourg) we investigated habitat development and habitat use of Galloway cattle deployed in a low-intensity grazing system on a permanent floodplain pasture. Habitats were delimited with a mobile GPS/GIS mapping system and their spatial development was assessed over three consecutive years. During these three years, the patches of the six habitats decreased to 40% of mean initial size, and a rapid net area expansion of wetland habitats (large sedge swamps: +100%, marsh and tall forb grasslands: +43%) was observed. The behavioural patterns and grazing preferences of the cattle were observed directly during the vegetation period in June, August and November. These observations were complemented by a transect analysis of cattle impact indicators in June and November. The cattle grazed the different habitats very selectively, as they preferred the mesophilic, and ruderal grasslands 1.6, and 5.6 times more than expected respectively. During the growing season, the grazing niche breadth declined (3.92 in June to 2.68 in November), and less preferred forage habitats like large sedge swamps were grazed primarily in the autumn. We used bite and step rates to investigate grazing intensity by habitat type. During summer, grazing intensity correlated with forage quality in the different habitat patches, whereas in autumn it was obviously influenced by the effort required to access the desired forage plants in a given habitat. The impact indicators revealed a matter transfer from riparian areas to the valley edge. Here, we give a first insight into habitat development and habitat use of Galloway cattle in a recently restored floodplain area and derive recommendations for the adaptive management of future projects.  相似文献   
109.
Following human arrival, Madagascar suffered well-documented megafaunal extinctions and widespread deforestation. Although humans are widely considered to be the primary cause of the extinctions, the relative contributions of climate change and human activities to this ecological transformation remain uncertain. Reconstructing the habitats of the giant lemurs of Madagascar can provide key information for understanding the evolutionary mechanisms involved in their extinction. In this study, I present a faunal analysis of the subfossil assemblage from Ankilitelo Cave, southwestern Madagascar. This assemblage documents the latest known occurrence of five species of extinct giant lemur, in association with abundant well-preserved small mammal remains. I compared the small mammal fauna at Ankilitelo with 27 extant Malagasy mammal communities spanning the range of Madagascar's habitat types. Similarities in species composition between modern communities and Ankilitelo were assessed using cluster analysis. Ecological similarities were examined by assigning each species to dietary, locomotor, activity pattern, and body size categories. Multiple discriminant analysis was then used to classify Ankilitelo relative to modern habitat types in Madagascar, based on the ecological structure of the subfossil fauna. Results indicate that the habitat surrounding Ankilitelo during the late Holocene was similar to the succulent woodlands of modern southwestern Madagascar. This suggests that approximately 500 yr BP, these semi-arid habitats supported a subfossil lemur community that included the highly-suspensory Palaeopropithecus, and deliberate slow-climber Megaladapis, as well as Archaeolemur, Pachylemur, and Daubentonia robusta. In such environments, these giant lemurs would likely have been highly vulnerable to increasing human pressure in southwestern Madagascar.  相似文献   
110.
Biofuels are both a promising solution to global warming mitigation and a potential contributor to the problem. Several life cycle assessments of bioethanol have been conducted to address these questions. We performed a synthesis of the available data on Brazilian ethanol production focusing on greenhouse gas (GHG) emissions and carbon (C) sinks in the agricultural and industrial phases. Emissions of carbon dioxide (CO2) from fossil fuels, methane (CH4) and nitrous oxide (N2O) from sources commonly included in C footprints, such as fossil fuel usage, biomass burning, nitrogen fertilizer application, liming and litter decomposition were accounted for. In addition, black carbon (BC) emissions from burning biomass and soil C sequestration were included in the balance. Most of the annual emissions per hectare are in the agricultural phase, both in the burned system (2209 out of a total of 2398 kg Ceq), and in the unburned system (559 out of 748 kg Ceq). Although nitrogen fertilizer emissions are large, 111 kg Ceq ha?1 yr?1, the largest single source of emissions is biomass burning in the manual harvest system, with a large amount of both GHG (196 kg Ceq ha?1 yr?1). and BC (1536 kg Ceq ha?1 yr?1). Besides avoiding emissions from biomass burning, harvesting sugarcane mechanically without burning tends to increase soil C stocks, providing a C sink of 1500 kg C ha?1 yr?1 in the 30 cm layer. The data show a C output: input ratio of 1.4 for ethanol produced under the conventionally burned and manual harvest compared with 6.5 for the mechanized harvest without burning, signifying the importance of conservation agricultural systems in bioethanol feedstock production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号