首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3268篇
  免费   49篇
  国内免费   42篇
  3359篇
  2023年   11篇
  2022年   47篇
  2021年   64篇
  2020年   47篇
  2019年   59篇
  2018年   45篇
  2017年   64篇
  2016年   58篇
  2015年   97篇
  2014年   199篇
  2013年   184篇
  2012年   154篇
  2011年   203篇
  2010年   165篇
  2009年   128篇
  2008年   147篇
  2007年   139篇
  2006年   119篇
  2005年   128篇
  2004年   107篇
  2003年   92篇
  2002年   41篇
  2001年   26篇
  2000年   40篇
  1999年   53篇
  1998年   48篇
  1997年   54篇
  1996年   51篇
  1995年   58篇
  1994年   54篇
  1993年   48篇
  1992年   53篇
  1991年   57篇
  1990年   32篇
  1989年   47篇
  1988年   40篇
  1987年   33篇
  1986年   19篇
  1985年   34篇
  1984年   34篇
  1983年   21篇
  1982年   35篇
  1981年   30篇
  1980年   24篇
  1979年   29篇
  1978年   15篇
  1977年   18篇
  1976年   22篇
  1973年   24篇
  1972年   27篇
排序方式: 共有3359条查询结果,搜索用时 42 毫秒
71.
The purpose of the present study was to investigate the effect of stretch-shortening-cycle-induced muscle damage on the time course of mechanical behaviour in the drop jump. Ten healthy male subjects performed submaximal stretch-shortening cycle (SSC) exercise on a special sledge apparatus. Exhaustion occurred on average within 3 min. A drop jump (DJ) test from a 50-cm height was performed before and immediately after the sledge exercise as well as 2 h, 2 days and 4 days later. The fatigue exercise showed relatively high blood lactate concentration [12.5 (SD 2.6) mmol x l(-1)] and an increase of serum creatine kinase (CK) activity delayed by 2 days [540 (SD 407) U x l(-1)]. The initial decline in the jump performance (before - immediately after) was related negatively to the early recovery in performance (immediately after 2 h) (P < 0.05). The early recovery of the knee joint moment at the end of stretch showed a negative correlation to the delayed decrease in DJ performance (2 h 2 days) (P < 0.01). Thus, the DJ performance showed an initial decline followed by an early recovery and a secondary decline. Both the initial decline and early recovery in the knee joint moment at the end of stretch were related to the corresponding initial (after 2 h) (P < 0.05) and secondary increases (2 h - 2 days) (P < 0.01) in CK. It is suggested that the early recovery as well as the initial decline in the knee joint function could depend on the degree of muscle damage. Delayed decrease in initial stiffness (2 h - 2 days) was negatively related to the corresponding changes in the knee joint angle at touch down in DJ (P < 0.001). These interactions would imply that the decrease in the stiffness regulation and the modulation of the prelanding motor control might be attributable to secondary muscle damage during 2 days after the SSC exercise. Therefore, it may be suggested that the changes in the DJ performance after the exhausting SSC exercise accompany the progress of muscle damage observed by the corresponding increase in serum CK concentration and the corresponding deterioration of stiffness regulation and motor control in DJ.  相似文献   
72.
Myotonic dystrophy 1 (DM1) is a multisystemic disease caused by a triplet nucleotide repeat expansion in the 3' untranslated region of the gene coding for myotonic dystrophy protein kinase (DMPK). DMPK is a nuclear envelope (NE) protein that promotes myogenic gene expression in skeletal myoblasts. Muscular dystrophy research has revealed the NE to be a key determinant of nuclear structure, gene regulation, and muscle function. To investigate the role of DMPK in NE stability, we analyzed DMPK expression in epithelial and myoblast cells. We found that DMPK localizes to the NE and coimmunoprecipitates with Lamin-A/C. Overexpression of DMPK in HeLa cells or C2C12 myoblasts disrupts Lamin-A/C and Lamin-B1 localization and causes nuclear fragmentation. Depletion of DMPK also disrupts NE lamina, showing that DMPK is required for NE stability. Our data demonstrate for the first time that DMPK is a critical component of the NE. These novel findings suggest that reduced DMPK may contribute to NE instability, a common mechanism of skeletal muscle wasting in muscular dystrophies.  相似文献   
73.
Abnormal vascular smooth muscle cell (VSMC) proliferation contributes to occlusive and proliferative disorders of the vessel wall. Salicylate and other nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit VSMC proliferation by an unknown mechanism unrelated to anti-inflammatory activity. In search for this mechanism, we have studied the effects of salicylate and other NSAIDs on subcellular Ca(2+) homeostasis and Ca(2+)-dependent cell proliferation in rat aortic A10 cells, a model of neointimal VSMCs. We found that A10 cells displayed both store-operated Ca(2+) entry (SOCE) and voltage-operated Ca(2+) entry (VOCE), the former being more important quantitatively than the latter. Inhibition of SOCE by specific Ca(2+) released-activated Ca(2+) (CRAC/Orai) channels antagonists prevented A10 cell proliferation. Salicylate and other NSAIDs, including ibuprofen, indomethacin, and sulindac, inhibited SOCE and thereby Ca(2+)-dependent, A10 cell proliferation. SOCE, but not VOCE, induced mitochondrial Ca(2+) uptake in A10 cells, and mitochondrial depolarization prevented SOCE, thus suggesting that mitochondrial Ca(2+) uptake controls SOCE (but not VOCE) in A10 cells. NSAIDs depolarized mitochondria and prevented mitochondrial Ca(2+) uptake, suggesting that they favor the Ca(2+)-dependent inactivation of CRAC/Orai channels. NSAIDs also inhibited SOCE in rat basophilic leukemia cells where mitochondrial control of CRAC/Orai is well established. NSAIDs accelerate slow inactivation of CRAC currents in rat basophilic leukemia cells under weak Ca(2+) buffering conditions but not in strong Ca(2+) buffer, thus excluding that NSAIDs inhibit SOCE directly. Taken together, our results indicate that NSAIDs inhibit VSMC proliferation by facilitating the Ca(2+)-dependent inactivation of CRAC/Orai channels which normally is prevented by mitochondria clearing of entering Ca(2+).  相似文献   
74.
75.
Ca2+ sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr697 and/or Thr855 (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser696 prevents phosphorylation at Thr697. However, the effects of Ser854 and dual Ser696–Thr697 and Ser854–Thr855 phosphorylations on myosin phosphatase activity and contraction are unknown. We characterized a suite of MYPT1 proteins and phosphospecific antibodies for specificity toward monophosphorylation events (Ser696, Thr697, Ser854, and Thr855), Ser phosphorylation events (Ser696/Ser854) and dual Ser/Thr phosphorylation events (Ser696–Thr697 and Ser854–Thr855). Dual phosphorylation at Ser696–Thr697 and Ser854–Thr855 by cyclic nucleotide-dependent protein kinases had no effect on myosin phosphatase activity, whereas phosphorylation at Thr697 and Thr855 by Rho-associated kinase inhibited phosphatase activity and prevented phosphorylation by cAMP-dependent protein kinase at the neighboring Ser residues. Forskolin induced phosphorylation at Ser696, Thr697, Ser854, and Thr855 in rat caudal artery, whereas U46619 induced Thr697 and Thr855 phosphorylation and prevented the Ser phosphorylation induced by forskolin. Furthermore, pretreatment with forskolin prevented U46619-induced Thr phosphorylations. We conclude that cross-talk between cyclic nucleotide and RhoA signaling pathways dictates the phosphorylation status of the Ser696–Thr697 and Ser854–Thr855 inhibitory regions of MYPT1 in situ, thereby regulating the activity of myosin phosphatase and contraction.  相似文献   
76.
77.
Summary Locust lipoproteins (lipophorins) were localized by indirect immunofluorescence- and immunogold labelling in cryosections of dorsolongitudinal flight muscles. Immunolabelling was performed with monoclonal antibodies against apolipoprotein epitopes that are exposed at the surfaces of the lipophorin particles. Both at rest and during flight, lipophorins were located only in the wider spaces of the extracellular matrix, in the basement membranes of the individual muscle fibers and in the extracellular spaces that surround interfibrillar tracheoles. No internalization of lipophorins by the flight muscle cells was observed. Our results indicate that the unloading of lipophorins at the flight muscles is an extracellular event. Similarities with the vertebrate system of chylomicron and very-low-density lipoprotein degradation are discussed.  相似文献   
78.
Fibre-type differentiation of the lateral musculature has been studied in Sparus aurata (L.) and Dicentrarchus labrax (L.) during larval development. Histochemical and ultrastructural techniques show two presumptive muscle layers and two germinative zones of presumptive myoblasts. At hatching, myotomal muscle consists of a monolayer of thin undifferentiated cells near the skin (first germinative zone) overlying another mono-layer of small diameter fibres extending hypaxially and epaxially away from the transverse septum. Below this, there is a much thicker, deep layer of fibres, generally large in diameter and polygonal in shape. The presumptive myoblasts are located between these two layers of fibres in the second germinative zone. Initially, the superficial and deep muscle fibres show high and low myosin ATPase activity, respectively. Both layers grow by generating new fibres from the two mentioned germinative zones. At the end of larval life, the superficial layer changes its histochemical profile from high to low myosin ATPase activity and, at the same time, intermediate or pink muscle fibres can be observed by oxidative activity (the NADH-TR reaction). Morphometric analysis shows a significant increase in mean fibre diameter during successive ages, as shown by the Student's t-test (hypertrophic growth). Skewness and kurtosis values of fibre diameters point to the generation of a new fibre population from the germinative zones (hyperplastic growth).  相似文献   
79.
Summary InChaetoceros peruvianus, the two very long, delicately tapered setae (spine-like processes) of the lower valve curve downwards gently until they are often almost parallel, while those emerging from the upper valve curve sharply downwards until oriented almost in the same direction as the setae of the lower valve. This curvature creates a deep pit between the bases of the upper valve's setae, where they emerge from the valve. In live cells, extension of setae is rapid and very sensitive to disturbance. After cleavage the new silica deposition vesicle (SDV) appears in the centre of the furrow and expands outwards over it. A distinct microtubule centre (MC) appears directly on top of the SDV. Microtubules (MTs) from the MC ensheath the nucleus, and others fan out over the SDV and plasmalemma. A little later, the MC in the lower daughter cell moves off the SDV, and its MTs now appear to mould the plasmalemma/ SDV into the deep pit between the base of the setae. In the upper daughter cell, the MC remains on the SDV. Initiation of setae is first observed as protuberances of bare cytoplasm growing from the sides of the daughter cells, through gaps in the parental valve. Many MTs initially line the plasmalemma of these protuberances as they grow outwards and the SDV also expands over the new surface. As the setae get longer, a unique complex of three organelles appears. Just behind the naked cytoplasm at the tip of the seta, a thin flat layer of fibrous material lines the plasmalemma. This, the first of the complex, is called the thin band. Immediately behind this is the second, a much thicker, denser fibrous band, the thick band. At the front edge of the SDV, 5–6 finger-like outgrowths of silicified wall grow forwards. These are interconnected by the elements of the thick band which thus apparently dictate the polygonal profile of the seta. These also appear to generate the spinules (tiny spines) that adorn the surface of the seta; the spiral pattern of the spinules indicates that this whole complex might differentiate one after the next, in order. Further back from the tip, evenly spaced transverse ribs are formed. These are connected to the third organelle in the complex, the striated band; our interpretation is that the striated band sets up the spacing of the ridges that regularly line the inner surface of the setae. During seta growth, this complex is apparently responsible for controlling the delicate tapering curvature of the very fine silica processes. Since the complex is always seen near the tip of the seta, we conclude that it migrates forwards steadily as the tip grows. While the thin and thick bands could slide continuously over the cell membrane, the striated band must be disassembled and then recycled forward during extension if it is indeed connected to the ridges lining the inside of the setae. We could find no indication that turgor pressure drives extension of the setae, in which event the activity of these organelles is responsible for growth using the justformed silica tube as the base from which extension is generated.  相似文献   
80.
Female athletes are more prone to anterior cruciate ligament (ACL) injury. A neuromuscular imbalance called leg dominance may provide a biomechanical explanation. Therefore, the purpose of this study was to compare the side-to-side lower limb differences in movement patterns, muscle forces and ACL forces during a single-leg drop-landing task from two different heights. We hypothesized that there will be significant differences in lower limb movement patterns (kinematics), muscle forces and ACL loading between the dominant and non-dominant limbs. Further, we hypothesized that significant differences between limbs will be present when participants land from a greater drop-landing height. Eight recreational female participants performed dominant and non-dominant single-leg drop landings from 30 to 60 cm. OpenSim software was used to develop participant-specific musculoskeletal models and to calculate muscle forces. We also predicted ACL loading using our previously established method. There were no significant differences between dominant and non-dominant leg landing except in ankle dorsiflexion and GMED muscle forces at peak GRF. Landing from a greater height resulted in significant differences among most kinetics and kinematics variables and ACL forces. Minimal differences in lower-limb muscle forces and ACL loading between the dominant and non-dominant legs during single-leg landing may suggest similar risk of injury across limbs in this cohort. Further research is required to confirm whether limb dominance may play an important role in the higher incidence of ACL injury in female athletes with larger and sport-specific cohorts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号