首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   0篇
  国内免费   7篇
  2016年   2篇
  2015年   3篇
  2014年   12篇
  2013年   17篇
  2012年   15篇
  2011年   8篇
  2010年   7篇
  2009年   14篇
  2008年   14篇
  2007年   19篇
  2006年   18篇
  2005年   22篇
  2004年   14篇
  2003年   10篇
  2002年   9篇
  2001年   7篇
  2000年   2篇
  1999年   3篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
排序方式: 共有199条查询结果,搜索用时 15 毫秒
51.
52.
Coniothyrium minitans colonises and destroys the sclerotia of Sclerotinia sclerotiorum in nature exhibiting ecologically obligate mycoparasitism as its spores remain dormant in soil and only grow actively in the presence of the sclerotia. Molecular mechanisms underlying sclerotial mycoparasitism are poorly defined. We identified 251 unisequences representing genes preferentially expressed by C. minitans during sclerotial mycoparasitism, substantially increasing the molecular knowledge of this commercially important biocontrol agent. Genes associated with signalling and cellular communication, degradation of host cell walls and energy reserves, nutrient utilisation, detoxification and stress response were identified suggesting that C. minitans employs a number of key processes during host colonisation. Several of these genes are novel to fungal-fungal interactions (e.g. PTH11-like GPCR and the ETP gene cluster). Secretin receptor-like GPCR and the TGF-beta signalling system have not yet been characterised in filamentous fungi. This study provides the basis for in-depth gene function analysis in sclerotial mycoparasitism.  相似文献   
53.
54.
55.
Imprinted genes play important roles in mammalian growth, development and behavior. The Rasgrf1 (Ras protein-specific guanine nucleotide exchange factor 1) gene has been identified as an imprinted gene in mouse and rat. In the present study, we detected its sequence, imprinting status and expression pattern in the domestic pigs. A 228 bp partial sequence located in exon 14 and a 193 bp partial sequence located in exon 1 of the Rasgrf1 gene in domestic pigs were obtained. A G/A transition, was identified in Rasgrf1 exon 14, and then, the reciprocal Berkshire × Wannan black F1 hybrid model and the RT-PCR-RFLP method were used to detect the imprinting status of porcine Rasgrf1 gene at the developmental stage of 1-day-old. The expression profile results indicated that the porcine Rasgrf1 mRNA was highly expressed in brain, pituitary and pancreas, followed by kidney, stomach, lung, testis, small intestine, ovary, spleen and liver, and at low levels of expression in longissimus dorsi, heart, and backfat. The expression levels of Rasgrf1 gene in brain, pituitary and pancreas tissues were significantly different between the two reciprocal F1 hybrids. Imprinting analysis showed that porcine Rasgrf1 gene was maternally expressed in the liver, small intestine, paternally expressed in the lung, but biallelically expressed in brain, heart, spleen, kidney, stomach, pancreas, backfat, testis, ovary, longissimus dorsi and pituitary tissues.  相似文献   
56.
57.
58.
59.
Barozai MY 《Gene》2012,499(1):163-168
  相似文献   
60.
Khan MA  Han Y  Zhao YF  Korban SS 《Gene》2012,494(2):196-201
EST data generated from 14 apple genotypes were downloaded from NCBI and mapped against a reference EST assembly to identify Single Nucleotide Polymorphisms (SNPs). Mapping of these SNPs was undertaken using 90% of sequence similarity and minimum coverage of four reads at each SNP position. In total, 37,807 SNPs were identified with an average of one SNP every 187 bp from a total of 6888 unique EST contigs. Identified SNPs were checked for flanking sequences of ≥ 60 bp along both sides of SNP alleles for reliable design of a custom high-throughput genotyping assay. A total of 12,299 SNPs, representing 6525 contigs, fit the selected criterion of ≥ 60 bp sequences flanking a SNP position. Of these, 1411 SNPs were validated using four apple genotypes. Based on genotyping assays, it was estimated that 60% of SNPs were valid SNPs, while 26% of SNPs might be derived from paralogous regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号