首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   300篇
  免费   260篇
  国内免费   1篇
  2022年   1篇
  2021年   4篇
  2020年   8篇
  2019年   4篇
  2018年   19篇
  2017年   108篇
  2016年   50篇
  2015年   61篇
  2014年   56篇
  2013年   91篇
  2012年   97篇
  2011年   21篇
  2010年   6篇
  2009年   9篇
  2008年   8篇
  2007年   5篇
  2006年   3篇
  2004年   1篇
  2002年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1985年   1篇
  1984年   2篇
排序方式: 共有561条查询结果,搜索用时 953 毫秒
71.
72.
73.
74.
75.
76.
77.
78.
79.
It has been documented that mutations in the human desmin gene lead to a severe type of myofibrillar myopathy, termed more specifically desminopathy, which affects cardiac and skeletal as well as smooth muscle. We showed recently that 14 recombinant versions of these disease-causing desmin variants, all involving single amino acid substitutions in the alpha-helical rod domain, interfere with in vitro filament formation at distinct stages of the assembly process. We now provide mechanistic details of how these mutations affect the filament assembly process by employing analytical ultracentrifugation, time-lapse electron microscopy of negatively stained and glycerol-sprayed/low-angle rotary metal-shadowed samples, quantitative scanning transmission electron microscopy, and viscometric studies. In particular, the soluble assembly intermediates of two of the mutated proteins exhibit unusually high s-values, compatible with octamers and other higher-order complexes. Moreover, several of the six filament-forming mutant variants deviated considerably from wild-type desmin with respect to their filament diameters and mass-per-length values. In the heteropolymeric situation with wild-type desmin, four of the mutant variants caused a pronounced "hyper-assembly", when assayed by viscometry. This indicates that the various mutations may cause abortion of filament formation by the mutant protein at distinct stages, and that some of them interfere severely with the assembly of wild-type desmin. Taken together, our findings provide novel insights into the basic intermediate filament assembly mechanisms and offer clues as to how amino acid changes within the desmin rod domain may interfere with the normal structural organization of the muscle cytoskeleton, eventually leading to desminopathy.  相似文献   
80.
Heterotopic ossification (HO), or bone formation in soft tissues, is often the result of traumatic injury. Much evidence has linked the release of BMPs (bone morphogenetic proteins) upon injury to this process. HO was once thought to be a rare occurrence, but recent statistics from the military suggest that as many as 60% of traumatic injuries, resulting from bomb blasts, have associated HO. In this study, we attempt to define the role of peripheral nerves in this process. Since BMP2 has been shown previously to induce release of the neuroinflammatory molecules, substance P (SP) and calcitonin gene related peptide (CGRP), from peripheral, sensory neurons, we examined this process in vivo. SP and CGRP are rapidly expressed upon delivery of BMP2 and remain elevated throughout bone formation. In animals lacking functional sensory neurons (TRPV1(-/-) ), BMP2-mediated increases in SP and CGRP were suppressed as compared to the normal animals, and HO was dramatically inhibited in these deficient mice, suggesting that neuroinflammation plays a functional role. Mast cells, known to be recruited by SP and CGRP, were elevated after BMP2 induction. These mast cells were localized to the nerve structures and underwent degranulation. When degranulation was inhibited using cromolyn, HO was again reduced significantly. Immunohistochemical analysis revealed nerves expressing the stem cell markers nanog and Klf4, as well as the osteoblast marker osterix, after BMP2 induction, in mice treated with cromolyn. The data collectively suggest that BMP2 can act directly on sensory neurons to induce neurogenic inflammation, resulting in nerve remodeling and the migration/release of osteogenic and other stem cells from the nerve. Further, blocking this process significantly reduces HO, suggesting that the stem cell population contributes to bone formation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号