首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   2篇
  国内免费   2篇
  106篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   9篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
31.
The use of low intensity ultrasound has gotten surprising consideration over the last decade as a method for enhancing the catalytic activity of enzyme. Ultrasounds have the potential to significantly influence the activity of the enzymatic processes, provided that the energy input is not so high as to inactivate the enzyme. By providing the variation in parameters, various physical and chemical effects can be attained that can enhance the enzymatic reaction. Ultrasonic reactors are known for their application in bioprocesses. However, the potential of their applications is still limited broadly due to the lack of proper information about their operational and performance parameters. In this review, the detailed information about ultrasonic reactors is provided by defining the different types of reactors and number and position of ultrasonic transducers. Also, it includes mechanism of intensification and influence of ultrasonic parameters (intensity, duty cycle, and frequency) and enzymatic factors (enzyme concentration, temperature, and pH) on the catalytic activity of enzyme during ultrasound treatment.  相似文献   
32.
Simple anaerobic reactors were installed to treat metal-contaminated water in an underground coal mine and at a smelting residues dump in Pennsylvania. The reactors consisted of barrels and tanks filled with spent mushroom compost, within which bacterial sulfate reduction became established. Concentrations of Al, Cd, Fe, Mn, Ni, and Zn were typically lowered by over 95% as contaminated water flowed through the reactors. Cadmium, Fe, Ni, and some Zn were retained as insoluble metal sulfides following their reaction with bacterially generated H(2)S. Aluminum, Mn, and some Zn hydrolyzed and were retained as insoluble hydroxides or carbonates. Reactor effluents were typically circumneutral in pH and contained net alkalinity. The principal sources of alkalinity in the reactors were bacterial sulfate reduction and limestone dissolution. This article examines the chemistry of the reactor systems and the opportunities for enhancing their metal-retaining and alkalinity-generating potential. (c) 1992 John Wiley & Sons, Inc.  相似文献   
33.
The present knowledge of the microbiology, physiology and regulation of anaerobic digestion in conventional or advanced processes is reviewed. In all systems the carbon flow from biopolymers to biogas is determined by syntrophic interactions of fermentative or acetogenic bacteria with methanogens at the level of interspecies hydrogen transfer. Inhibitors or heavy metal ions may interfere at different levels.The stabilization of waste at mesophilic and thermophilic temperatures is compared and the process stability as well as the inactivation of pathogens is discussed. Characteristics of conventional digestion systems and of recently developed advanced processes with solids and liquids uncoupling are compared and selection criteria with respect to the type of sludge are outlined.Areas of future research for a better understanding of the biochemistry, the physiology and the regulation of the degradation of pollutants are suggested.  相似文献   
34.
Extracellular polymeric substances (EPS) are believed to play a role in the binding and formation of microbial flocs. However, the precise role is not well known Sludge settling characteristics and the carbohydrate to protein ratio in EPS were tested with various airflow rates in this study. Sludge, was collected from three modified sequencing batch reactors (SBRs), which were operated at 16°C with an airflow rate of 0.8 L/min, 3L/min and 6 L/min, respectively. During the operation, the reactor operated at an airflow rate of 0.8 L/min showed sludge volume index (SVI) of 80 to 90 mL/g and a constant ratio of carbohydrate to protein in the EPS, while a significant increase in the SVI was seen in the other reactors. Sludge bulking increased the amount of carbohydrate in the EPS, while kept protein almost constant in the airflow rate of 3 L/min and 6 L/min. Surface charge also increased with increases in the carbohydrate to protein ratio in the EPS, which weakens the attraction between the EPS and multivalent cations. The ratio of carbohydrate to protein in the EPS was inferred to be essential for bioflocculation.  相似文献   
35.
Immobilized enzyme reactors (IMERs) based upon dopamine beta-hydroxylase (DBH) have been developed. Immobilized artificial membrane (IAM) and glutaraldehyde-P (Glut-P) stationary phases have been used to immobilize DBH. When DBH is immobilized on the Glut-P interphase the enzyme is outside the stationary phase whereas with the IAM interphase the enzyme is embedded within the interphase surroundings. The activity of each IMER and their ability for on-line hydroxylation has been investigated. The resulting IMERs are enzymatically active and reproducible. The IMERs can be utilized through the use of coupled chromatography to characterize the cytosolic (DBH-Glut-P-IMER) and membrane-bound (DBH-IAM-IMER) forms of the enzyme. The substrate is injected onto the individual IMERs and the reactants and products are eluted onto a phenylboronic acid column for on-line extraction. The substrates and products are then transported via a switching valve to coupled analytical columns. The results demonstrate that enzyme-substrate and enzyme-inhibitor interactions can be investigated with the on-line system. These IMERs can be utilized for the discovery and characterization of new drug candidates specific for the soluble form and membrane-bound form of DBH. The effects of flow-rate, contact time, pH and temperature have also been investigated.  相似文献   
36.
Five laboratory scale upflow anaerobic sludge blanket (UASB) reactors were seeded with nongranular sewage sludge. Granulation was obtained after 15–35 days when between 0.5 and 2.0m/h upflow liquid velocity was applied, with an organic loading rate (OLR) of 8g COD/l.d (COD is the chemical oxygen demand). Granules had different physical characteristics and specific activity (g CODREMOVED/g volatile suspended solids) depending on the upflow liquid velocity applied. Granules were obtained in short startup periods (5 and 14 days) when a pilot-scale (180l) UASB reactor with a height of 4.7m was used to study hydraulic effects on the granulation process.  相似文献   
37.
The biodegradability of two commercial diesel fuels, i.e., Diesel and HiQ Diesel, herewith designated as G1 and G2, respectively, spiked to an agricultural soil at 10 g kg−1 was studied under aerobic slurry-phase conditions in the absence and in the presence of Enzyveba, i.e., a characterized commercial source of microorganisms and nutrients. A quite similar hydrocarbon composition was displayed by G1 and G2, which were found to be both extensively and almost completely biodegraded under all conditions after 4.5 months of treatment with a remarkable depletion of initial soil ecotoxicity, in particular in the G2 spiked one. The addition of Enzyveba resulted in a higher availability of cultivable specialized bacteria and fungi in the reactors but this only resulted in a slight intensification of soil bioremediation, probably because of the high contents of nutrients and indigenous specialized microorganisms of the soil. A faster biodegradation of hydrocarbons and a more rapid and extensive depletion of initial ecotoxicity were generally observed in the soil reactors spiked with G2 with respect to those spiked with G1 probably for the G2 content of additives capable of improving hydrocarbons bioavailability.  相似文献   
38.
Conclusion  Stirred tank, fluidized bed, and airlift reactors produced similar neomycin activity with immobilized cells. Packed bed reactor clearly under performed, probably because of insufficient aeration or mixing. Neomycin production using immobilized cells in fermentors requires good mixing and aeration.  相似文献   
39.
A rotating annular reactor (Roto Torque) was used for qualitative and quantitative studied on biofilm heterogeneity. In contrast to the classic image of biofilms as smooth, homogeneous layers of biomass on a substratum, studies using various pure and mixed cultures consistently revealed more-dimensional structures that resembled dunes and ridges, among others. These heterogeneities were categorized and their underlying causes analyzed. Contrary to expectations, motility of the microorganisms not a decisive factor in determining biofilm homogeneity. Small Variations in substratum geometry homogeneity. Small variations in substratum geometry and flow patterns were clearly reflected in the biofilm pattern. Nonhomogeneous flow and shear patterns in the reactor, together with inadequate mixing resulted in significant, position-dependent differences in surface growth. It was therefore not possible to take representative samples of the attached biomass. Like many other types of reactors, the Roto Torque reactor is valuable for qualitative and morphological biofilm experiments but less suitable for quantitative physiological and kinetics studies using attached microorganisms. (c) 1994 John Wiley & Sons, Inc.  相似文献   
40.
When a dissolved oxygen (DO) probe is submerged in an air-saturated cell culture medium the thickness of the liquid film that exists outside the membrane of a DO probe changes with hydrodynamic shear. The response of the DO probe thus varies with the hydrodynamic shear environment near the DO probe in cell culture reactors. The thickness of the liquid film was estimated by using a three-layer model, which describes the flow of DO molecules through the liquid layer, the membrane, and the electrolyte, to the cathode of a DO probe. According to the three-layer model, the current output of the DO probe was a strong function of thickness of the liquid film outside the membrane of the DO probe. A correlation between shear rates on the surface of the probe and the DO saturation reading was obtained by using two concentric cylinders with a rotating inner cylinder. This correlation was then used to characterize the local hydrodynamic shear environment in a cell culture reactor. (c) 1993 John Wiley & Sons, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号