首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   102篇
  免费   2篇
  国内免费   2篇
  106篇
  2022年   1篇
  2021年   1篇
  2019年   3篇
  2018年   3篇
  2016年   1篇
  2015年   3篇
  2014年   4篇
  2013年   8篇
  2012年   2篇
  2011年   6篇
  2010年   1篇
  2009年   4篇
  2008年   9篇
  2007年   3篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   6篇
  2002年   8篇
  2001年   3篇
  2000年   2篇
  1999年   2篇
  1998年   3篇
  1995年   5篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   3篇
  1985年   1篇
  1984年   1篇
  1983年   3篇
  1982年   2篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
101.
Jet-loop reactors (JLR) used as biological waste treatment processes introduce an additional selective pressure on the natural microbial flora of the incoming effluent. Several high-performing microbial inocula were tested for winery wastewater treatment and the microbial composition was analysed. A microbial consortium was enriched and selected for use with a new type of aerobic JLR. The reactor was operated continuously for more than 1 year using winery wastewaters collected in different seasons. Chemical oxygen demand (COD) removal efficiency was on average greater than 80%, with retention times of 0.8–1 day. Microbial populations were sampled for characterisation after 6 months and at the end of the study. Isolates were identified at genus and/or species level. Almost all isolates belonged to the genera Pseudomonas and Bacillus. Saccharomyces cerevisiae was also found but no filamentous fungi. These results show that a highly adapted population develops in JLRs treating winery effluents as compared to other bioreactors. Aerobic JLRs impose a stringent selective criterion on the composition of the microbial biomass.  相似文献   
102.
Enzymatic hydrolysis of pre-treated lignocellulosic biomass is an ideal alternative to acid hydrolysis for bio-ethanol production, limited primarily by pre-treatment requirements and economic considerations arising from enzyme production costs and specific activities. The quest for cheaper and better enzymes has prompted years of bio-prospecting, strain optimization through genetic engineering, enzyme characterization for simple and complex lignocellulosic feedstock, and the development of pre-treatment strategies to mitigate inhibitory effects. The recent shift to systematic characterizations of de novo mixtures of purified proteins is a promising indicator of maturation within this field of study, facilitating progression towards feedstock assay-based rapid enzyme mixture optimization. It is imperative that international standards be developed to enable meaningful comparisons between these studies and the construction of a database of enzymatic activities and kinetics, aspects of which are explored here-in. Complementary efforts to improve the economic viability of enzymatic hydrolysis through process integration and reactor design are also considered, where membrane-confinement shows significant promise despite the associated technological challenges. Significant advancements in enzyme technology towards the economic conversion of lignocellulosic biomass should be expected within the next few years as systematic research in enzyme activities conforms to that of traditional reaction engineering.  相似文献   
103.
Temperature is a critical variable to be optimized in any enzymatic process, producing opposite effects on enzyme activity and inactivation rate. Temperature functions for all kinetic and inactivation parameters were validated for chitin-immobilized yeast lactase (CIL). Enzyme inactivation was described by a two-stage series mechanism. The effect of galactose and lactose on inactivation was determined in terms of modulation factors that were positive for galactose and negative for lactose. Modulation factors were mild functions of temperature in the first stage and strong functions in the second stage of enzyme inactivation, where galactose positive modulation factors increase while lactose negative modulation factors decrease with temperature. Temperature-explicit functions for kinetic and inactivation parameters were incorporated into a scheme to optimize temperature in the simulation of a continuous packed-bed reactor operation with chitin-immobilized lactase, based on an annual cost objective function. Optimum temperature was 20°C at enzyme replacement of 25% residual activity, and increased only slightly at higher replacement frequencies. The effect of modulation factors on reactor design and temperature optimization is presented and discussed. Software for temperature optimization that allows the introduction of variations in all parameters and operational criteria to perform sensitivity analysis was developed.  相似文献   
104.
The use of plant cells for the production of biochemicals represents a new area of biotechnological exploration. The techniques envisioned for industrial processes are related to those developed for microorganisms and a strong emphasis should be placed on immobilized cell systems. This review examines the spectrum of products that are synthesized by higher plants and the immobilization techniques that are suited to entrap plant cells from suspension culture. Different reactor configurations are described. Both packed-bed reactors with alginate-entrapped cells and hollow-fibre cartridges with sequestered cells have utility for the continuous production of biochemicals.  相似文献   
105.
The toxicity of formaldehyde (FA) in batch assays, using volatile fatty acids (VFA) as co-substrate, and the continuous anaerobic treatment of wastewaters containing FA in upflow anaerobic sludge blanket (UASB) reactors was investigated. In batch studies, FA exerted a 50% methanogenic toxicity on VFA at concentrations of around 100 mg/l, 2.5 times lower than values reported with sucrose. Although at FA concentrations higher than 200 mg/l methanogenesis was completely inhibited, a partial recovery of the bacterial activity was observed after 250 h when the FA had been removed from the medium. The continuous anaerobic degradation of FA at concentrations up to 2 g/l, using 1.6 g/l of glucose as co-substrate, was studied in a UASB reactor. A stable and efficient operation was observed at organic loading rates (OLR) of 6.0 g COD/l·d and with a COD/FA ratio as low as 1.4. A synthetic substrate with the same characteristics as the effluents produced during fibreboard adhesives manufacturing (based on urea-FA), i.e. 0.95 g FA/l and 0.35 g urea/l, was treated in a UASB reactor. The applied OLR and nitrogen loading rate (NLR) were 3.45 g COD/l·d and 0.58 g N/l·d, respectively. COD removal efficiencies were maintained at 90–95%, FA and urea being completely degraded.  相似文献   
106.
Biodiesel has gained widespread importance in recent years as an alternative, renewable liquid transportation fuel. It is derived from natural triglycerides in the presence of an alcohol and an alkali catalyst via a transesterification reaction. To date, transesterification based on the use of chemical catalysts has been predominant for biodiesel production at the industrial scale due to its high conversion efficiency at reasonable cost. Recently, biocatalytic transesterification has received considerable attention due to its favorable conversion rate and relatively simple downstream processing demands for the recovery of by-products and purification of biodiesel. Biocatalysis of the transesterification reaction using commercially purified lipase represents a major cost constraint. However, more cost-effective techniques based on the immobilization of both extracellular and intracellular lipases on support materials facilitate the reusability of the catalyst. Other variables, including the presence of alcohol, glycerol and the activity of water can profoundly affect lipase activity and stability during the reaction. This review evaluates the current status for lipase biocatalyst-mediated production of biodiesel, and identifies the key parameters affecting lipase activity and stability. Pioneer studies on reactor-based lipase conversion of triglycerides are presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号