首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2501篇
  免费   163篇
  国内免费   43篇
  2707篇
  2024年   4篇
  2023年   45篇
  2022年   58篇
  2021年   83篇
  2020年   91篇
  2019年   124篇
  2018年   133篇
  2017年   77篇
  2016年   96篇
  2015年   146篇
  2014年   200篇
  2013年   261篇
  2012年   143篇
  2011年   188篇
  2010年   115篇
  2009年   146篇
  2008年   121篇
  2007年   111篇
  2006年   110篇
  2005年   112篇
  2004年   74篇
  2003年   58篇
  2002年   64篇
  2001年   31篇
  2000年   41篇
  1999年   20篇
  1998年   14篇
  1997年   7篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有2707条查询结果,搜索用时 15 毫秒
1.
Copper is an essential yet toxic metal ion. To satisfy cellular requirements, while, at the same time, minimizing toxicity, complex systems of copper trafficking have evolved in all cell types. The best conserved and most widely distributed of these involve Atx1-like chaperones and P1B-type ATPase transporters. Here, we discuss current understanding of how these chaperones bind Cu(I) and transfer it to the Atx1-like N-terminal domains of their cognate transporter.  相似文献   
2.
The molecular mechanisms underlying the anterograde surface transport of G protein–coupled receptors (GPCRs) after their synthesis in the endoplasmic reticulum (ER) are not well defined. In C. elegans, odorant response abnormal 4 has been implicated in the delivery of olfactory GPCRs to the cilia of chemosensory neurons. However, the function and regulation of its human homolog, C1orf27, in GPCR transport or in general membrane trafficking remain unknown. Here, we demonstrate that siRNA-mediated knockdown of C1orf27 markedly impedes the ER-to-Golgi export kinetics of newly synthesized α2A-adrenergic receptor (α2A-AR), a prototypic GPCR, with the half-time being prolonged by more than 65%, in mammalian cells in retention using the selective hooks assays. Using modified bioluminescence resonance energy transfer assays and ELISAs, we also show that C1orf27 knockdown significantly inhibits the surface transport of α2A-AR. Similarly, C1orf27 knockout by CRISPR-Cas9 markedly suppresses the ER–Golgi-surface transport of α2A-AR. In addition, we demonstrate that C1orf27 depletion attenuates the export of β2-AR and dopamine D2 receptor but not of epidermal growth factor receptor. We further show that C1orf27 physically associates with α2A-AR, specifically via its third intracellular loop and C terminus. Taken together, these data demonstrate an important role of C1orf27 in the trafficking of nascent GPCRs from the ER to the cell surface through the Golgi and provide novel insights into the regulation of the biosynthesis and anterograde transport of the GPCR family members.  相似文献   
3.
Nucleoli and cytoplasmic stress granules (SGs) are subcellular compartments that modulate the response to endogenous and environmental signals to control cell survival. In our opinion, nucleoli and SGs are functionally linked; they are distant relatives that combine forces when cellular homeostasis is threatened. Several lines of evidence support this idea; nucleoli and SGs share molecular building blocks, are regulated by common signaling pathways and communicate when vital cellular functions become compromised. Together, nucleoli and SGs orchestrate physiological responses that are directly relevant to stress and human health. As both compartments have established roles in neurodegenerative diseases, cancer and virus infections, we propose that these conditions will benefit from therapeutic interventions that target simultaneously nucleoli and SGs.   相似文献   
4.
In the case of most optical imaging methods, contrast is generated either by physical properties of the sample (Differential Image Contrast, Phase Contrast), or by fluorescent labels that are localized to a particular protein or organelle. Standard Raman and infrared methods for obtaining images are based upon the intrinsic vibrational properties of molecules, and thus obviate the need for attached fluorophores. Unfortunately, they have significant limitations for live-cell imaging. However, an active Raman method, called Coherent Anti-Stokes Raman Scattering (CARS), is well suited for microscopy, and provides a new means for imaging specific molecules. Vibrational imaging techniques, such as CARS, avoid problems associated with photobleaching and photo-induced toxicity often associated with the use of fluorescent labels with live cells. Because the laser configuration needed to implement CARS technology is similar to that used in other multiphoton microscopy methods, such as two-photon fluorescence and harmonic generation, it is possible to combine imaging modalities, thus generating simultaneous CARS and fluorescence images. A particularly powerful aspect of CARS microscopy is its ability to selectively image deuterated compounds, thus allowing the visualization of molecules, such as lipids, that are chemically indistinguishable from the native species.  相似文献   
5.
Phosphorylation at glutamate receptor subunit 1(GluR1) Ser845 residue has been widely accepted to involve in GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor trafficking, but the in vivo evidence has not yet been established. One of the main obstacles is the lack of effective methodologies to selectively target phosphorylation at single amino acid residue. In this study, the Escherichia  coli -expressed glutathione- S -transferase-tagged intracellular carboxyl-terminal domain of GluR1 (cGluR1) was phosphorylated by protein kinase A for in vitro selection. We have successfully selected aptamers which effectively bind to phospho-Ser845 cGluR1 protein, but without binding to phospho-Ser831 cGluR1 protein. Moreover, pre-binding of the unphospho-cGluR1 protein with these aptamers inhibits protein kinase A-mediated phosphorylation at Ser845 residue. In contrast, the pre-binding of aptamer A2 has no effect on protein kinase C-mediated phosphorylation at Ser831 residue. Importantly, the representative aptamer A2 can effectively bind the mammalian GluR1 that inhibited GluR1/GluR1-containing AMPA receptor trafficking to the cell surface and abrogated forskolin-stimulated phosphorylation at GluR1 Ser845 in both green fluorescent protein–GluR1-transfected human embryonic kidney cells and cultured rat cortical neurons. The strategy to use aptamer to modify single-residue phosphorylation is expected to facilitate evaluation of the potential role of AMPA receptors in various forms of synaptic plasticity including that underlying psychostimulant abuse.  相似文献   
6.
Glioblastoma is the most common and aggressive brain tumor type, with a mean patient survival of approximately 1 year. Many previous analyses of the glioma kinome have identified key deregulated pathways that converge and activate mammalian target of rapamycin (mTOR). Following the identification and characterization of mTOR-promoting activity in gliomagenesis, data from preclinical studies suggested the targeting of mTOR by rapamycin or its analogs (rapalogs) as a promising therapeutic approach. However, clinical trials with rapalogs have shown very limited efficacy on glioma due to the development of resistance mechanisms. Analysis of rapalog-insensitive glioma cells has revealed increased activity of growth and survival pathways compensating for mTOR inhibition by rapalogs that are suitable for therapeutic intervention. In addition, recently developed mTOR inhibitors show high anti-glioma activity. In this review, we recapitulate the regulation of mTOR signaling and its involvement in gliomagenesis, discuss mechanisms resulting in resistance to rapalogs, and speculate on strategies to overcome resistance. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).  相似文献   
7.
One of the most vexing problems facing structural genomics efforts and the biotechnology enterprise in general is the inability to efficiently produce functional proteins due to poor folding and insolubility. Additionally, protein misfolding and aggregation has been linked to a number of human diseases, such as Alzheimer's. Thus, a robust cellular assay that allows for direct monitoring, manipulation, and improvement of protein folding could have a profound impact. We report the development and characterization of a genetic selection for protein folding and solubility in living bacterial cells. The basis for this assay is the observation that protein transport through the bacterial twin-arginine translocation (Tat) pathway depends on correct folding of the protein prior to transport. In this system, a test protein is expressed as a tripartite fusion between an N-terminal Tat signal peptide and a C-terminal TEM1 beta-lactamase reporter protein. We demonstrate that survival of Escherichia coli cells on selective medium expressing a Tat-targeted test protein/beta-lactamase fusion correlates with the solubility of the test protein. Using this assay, we isolated solubility-enhanced variants of the Alzheimer's Abeta42 peptide from a large combinatorial library of Abeta42 sequences, thereby confirming that our assay is a highly effective selection tool for soluble proteins. By allowing the bacterial Tat pathway to exert folding quality control on expressed target protein sequences, we have generated a powerful tool for monitoring protein folding and solubility in living cells, for molecular engineering of solubility-enhanced proteins or for the isolation of factors and/or cellular conditions that stabilize aggregation-prone proteins.  相似文献   
8.
Endocytosis-mediated recycling of plasma membrane is a critical vesicle trafficking step important in diverse biological processes. The membrane trafficking decisions and sorting events take place in a series of heterogeneous and highly dynamic organelles, the endosomes. Syntaxin 13, a recently discovered member of the syntaxin family, has been suggested to play a role in mediating endosomal trafficking. To better understand the function of syntaxin 13 we examined its intracellular distribution in nonpolarized cells. By confocal immunofluorescence and electron microscopy, syntaxin 13 is primarily found in tubular early and recycling endosomes, where it colocalizes with transferrin receptor. Additional labeling is also present in endosomal vacuoles, where it is often found in clathrin-coated membrane areas. Furthermore, anti-syntaxin 13 antibody inhibits transferrin receptor recycling in permeabilized PC12 cells. Immunoprecipitation of syntaxin 13 revealed that, in Triton X-100 extracts, syntaxin 13 is present in a complex(es) comprised of βSNAP, VAMP 2/3, and SNAP-25. This complex(es) binds exogenously added αSNAP and NSF and dissociates in the presence of ATP, but not ATPγS. These results support a role for syntaxin 13 in membrane fusion events during the recycling of plasma membrane proteins.  相似文献   
9.
The localization of beta-actin mRNA to the leading lamellae of chicken fibroblasts and neurite growth cones of developing neurons requires a 54-nt localization signal (the zipcode) within the 3' untranslated region. In this study we have identified and isolated five proteins binding to the zipcode. One of these we previously identified as zipcode binding protein (ZBP)1, a 4-KH domain protein. A second is now investigated in detail: a 92-kD protein, ZBP2, that is especially abundant in extracts from embryonic brain. We show that ZBP2 is a homologue of the human hnRNP protein, KSRP, that appears to mediate pre-mRNA splicing. However, ZBP2 has a 47-amino acid (aa) sequence not present in KSRP. Various portions of ZBP2 fused to GFP indicate that the protein most likely shuttles between the nucleus and the cytoplasm, and that the 47-aa insert promotes the nuclear localization. Expression of a truncated ZBP2 inhibits the localization of beta-actin mRNA in both fibroblast and neurons. These data suggest that ZBP2, although predominantly a nuclear protein, has a role in the cytoplasmic localization of beta-actin mRNA.  相似文献   
10.
The Sec24 subunit of the coat protein complex II (COPII) has been implicated in selecting newly synthesized cargo from the endoplasmic reticulum (ER) for delivery to the Golgi. The protozoan parasite, Trypanosoma brucei, contains two paralogs, TbSec24.1 and TbSec24.2, which were depleted using RNA interference in the insect form of the parasite. Depletion of either TbSec24.1 or TbSec24.2 resulted in growth arrest and modest inhibition of anterograde transport of the putative Golgi enzyme, TbGntB, and the secretory marker, BiPNAVRG-HA9. In contrast, depletion of TbSec24.1, but not TbSec24.2, led to reversible mislocalization of the Golgi stack proteins, TbGRASP and TbGolgin63. The latter accumulated in the ER. The localization of the COPI coatomer subunit, TbεCOP, and the trans Golgi network (TGN) protein, TbGRIP70, was largely unaffected, although the latter was preferentially lost from those Golgi that were not associated with the bilobe, a structure previously implicated in Golgi biogenesis. Together, these data suggest that TbSec24 paralogs can differentiate among proteins destined for the Golgi.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号