首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22144篇
  免费   968篇
  国内免费   694篇
  23806篇
  2024年   15篇
  2023年   252篇
  2022年   415篇
  2021年   523篇
  2020年   494篇
  2019年   721篇
  2018年   749篇
  2017年   397篇
  2016年   524篇
  2015年   668篇
  2014年   1373篇
  2013年   1580篇
  2012年   891篇
  2011年   1371篇
  2010年   982篇
  2009年   1052篇
  2008年   1237篇
  2007年   1233篇
  2006年   1117篇
  2005年   1000篇
  2004年   894篇
  2003年   741篇
  2002年   725篇
  2001年   451篇
  2000年   403篇
  1999年   416篇
  1998年   442篇
  1997年   363篇
  1996年   314篇
  1995年   329篇
  1994年   293篇
  1993年   230篇
  1992年   197篇
  1991年   172篇
  1990年   145篇
  1989年   127篇
  1988年   115篇
  1987年   108篇
  1986年   82篇
  1985年   92篇
  1984年   128篇
  1983年   105篇
  1982年   99篇
  1981年   74篇
  1980年   68篇
  1979年   46篇
  1978年   22篇
  1977年   15篇
  1976年   5篇
  1973年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Jaroslav Kolena   《FEBS letters》1989,250(2):425-428
Rat ovarian membrane LH/hCG receptor was solubilized in various detergents and reconstituted into proteoliposomes. Upon removal of sodium cholate by active absorption on Bio-Beads SM-2, the functional interaction between receptor and adenylate cyclase was restored. Adenylate cyclase was stimulated by hCG, HCG+GTP or GppNHp and NaF. Reconstituted proteoliposomes bound more 125I-hCG (528 fmol/mg protein) than membrane-bound receptors (384 fmol/mg protein). There was no difference, however, in the relative affinity of reconstituted receptor preparations for hCG.  相似文献   
992.
In this paper we demonstrate that the cytosofic low-Mr acid phosphatase purified from bovine liver has phosphotyrosine protein phosphatase acitivity on 32P-autophosphorylated epidermal growth factor (EGF) receptor. This activity was significantly inhibited by orthovanadate and p-hydroxymercuribenzoate; the latter result indicates that free sulfhydryl groups are required for phosphotyrosine phosphatase activity. The enzyme was active in a broad pH range, with maximum activity between pH 5.5 and 7.5. The apparent Km for 32P-EGF receptor dephosphorylation was 4 nM. The enzyme appeared to be specific for phosphotyrosine in that it dephosphorylated the autophosphorylated EGF receptor and L-phosphotyrosine, but not 32P-Ser-casein, L-phosphoserine or L-phosphothreonine. These data suggest that the cytosolic low-Mr acid phosphatase might play a regulatory role in EGF receptor-dependent transmembrane signalling.  相似文献   
993.
The possibility that an increased intracellular concentration of cyclic AMP (cAMP) can regulate the extent of muscarinic receptor-stimulated phosphoinositide (PPI) turnover in the human neuroblastoma cell line SK-N-SH was examined. Addition of either forskolin (or its water-soluble analog, L-85,8051), theophylline, isobutylmethylxanthine, or cholera toxin, agents that interact with either the catalytic unit of adenylate cyclase, cAMP phosphodiesterase, or the guanine nucleotide binding protein linked to adenylate cyclase activation, resulted in a 45-181% increase in cAMP concentration and a 27-70% inhibition of carbachol-stimulated inositol phosphate release. Through the use of digitonin-permeabilized cells, the site of inhibition was localized to a step at, or distal to, the guanine nucleotide binding protein that regulates phospholipase C activity. In contrast, when intact SK-N-SH cells were exposed to prostaglandin E1, the ensuing increases in cAMP were not accompanied by an inhibition of stimulated PPI turnover. These differential effects of increased cAMP concentrations on stimulated PPI turnover may reflect the compartmentation of cAMP within SK-N-SH cells.  相似文献   
994.
Membranes from rat telencephalon contain a single class of strychnine-insensitive glycine sites. That these sites are associated with N-methyl-D-aspartic acid (NMDA) receptors is indicated by the observations that [3H]glycine binding is selectively modulated by NMDA receptor ligands and, conversely, that several amino acids interacting with the glycine sites increase [3H]N-[1-(2-thienyl)cyclohexyl]piperidine ([3H]TCP) binding to the phencyclidine site of the NMDA receptor. The endogenous compound kynurenate and several related quinoline and quinoxaline derivatives inhibit glycine binding with affinities that are much higher than their affinities for glutamate binding sites. In contrast to glycine, kynurenate-type compounds inhibit [3H]TCP binding and thus are suggested to form a novel class of antagonists of the NMDA receptor acting through the glycine site. These results suggest the existence of a dual and opposite modulation of NMDA receptors by endogenous ligands.  相似文献   
995.
The novel N-methyl-D-aspartate receptor channel ligand (+)-[3H]5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5, 10-imine maleate ([3H]MK-801) has been utilized to label this receptor in human brain tissue. Characteristics of [3H]MK-801 binding to well-washed membranes from 17 control subjects and 16 patients with Alzheimer's disease were determined in frontal, parietal, and temporal cerebral cortex and cerebellar cortex. In control tissue the pharmacological specificity of the binding of this substance is entirely consistent with the profile previously reported for rat brain. Binding could be stimulated by the addition of glutamic acid to the incubation medium; addition of glycine produced further enhancement which was not prevented by strychnine. The specificity of the effects of these and other amino acids on the binding was the same as in the rat. In Alzheimer's disease significantly less binding was observed in the frontal cortex under glutamate- and glycine-stimulated conditions. This appears to be associated with a reduced affinity of the site whereas the pharmacological specificity of the site remained unchanged. The effect did not appear to be due to differences in mode of death between Alzheimer's disease and control subjects and is unlikely to be related to factors for which the groups were matched. In contrast, binding was not altered in the absence of added amino acids and presence of glutamate alone. These results imply that in the cerebral cortex the agonist site and a site in the cation channel of the receptor are not selectively altered, but that their coupling to a strychnine-insensitive glycine recognition site is impaired.  相似文献   
996.
Cultured GABAergic cerebral cortex neurons were exposed to the excitatory amino acid (EAA) L-glutamate, kainate (KA), N-methyl-D-aspartate (NMDA), or RS-alpha-amino-3-hydroxy-5-methyl-4-isoxazolopropionate (AMPA). To ensure a constant glutamate concentration in the culture media during the exposure periods, the glutamate uptake inhibitor L-aspartic acid beta-hydroxamate was added at 500 microM to the cultures that were exposed to glutamate. Each of these EAAs was able to induce neurotoxicity. It was not possible to reduce or prevent glutamate-induced cytotoxicity by blocking only one of the glutamate receptor subtypes with either the NMDA receptor antagonist D-(-)-2-amino-5-phosphonopentanoate (APV) or with one of the specific non-NMDA antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 6,7-dinitroquinoxaline-2,3-dione (DNQX). However, if the cultures were exposed simultaneously to glutamate and the antagonists in combination, i.e., APV plus CNQX or APV plus DNQX, the toxicity was completely prevented. Furthermore, CNQX and DNQX were shown to be selective blockers of cytotoxic phenomena induced by non-NMDA glutamate agonists with no effect on NMDA-induced cell death. Likewise, APV prevented NMDA-induced cell death without affecting the KA- or AMPA-induced neurotoxicity. It is concluded that EAA-dependent neurotoxicity is induced by NMDA as well as non-NMDA receptors.  相似文献   
997.
Toxaphene is a liver tumor promoter in B6C3F1 mice but not in F344 rats or hamsters. Recent studies demonstrate that key events leading to the mouse liver tumor response for toxaphene are mediated by activation of the constitutive androstane receptor (CAR). Benchmark dose modeling was conducted on available data for five endpoints in B6C3F1 mouse liver tissue or cultured liver cells (tumor response, cytotoxicity, proliferation, gap junction intercellular communication inhibition, and CAR-mediated CYP2B10 induction) and for CAR activation in human HepG2 cells, all reported in previous studies. The available evidence supports a nonlinear CAR-mediated mode of action (MOA) for toxaphene-induced mouse tumors including demonstration of a J-shaped dose-response pattern for human CAR activation, indicating that linear risk extrapolation at low doses is not supported for this MOA. Based on analysis of benchmark dose lower confidence limits at 10% response (BMDL10) and no observed effect levels (NOELs) for potential key events in the mouse liver tumor MOA for toxaphene, an RfD of 0.13 mg/kg-d is proposed based on a the BMDL10 for human CAR activation in human HepG2 cells. This value is below candidate RfD values based on BMDL10 estimates for both mouse liver tumors and mouse hepatocyte proliferation and therefore can be considered protective for human risk of liver tumor promotion and other CAR-mediated adverse health effects based on available data.  相似文献   
998.
Chemical entities with structural diversity were introduced as candidates targeting adenosine receptor with different clinical activities, containing 3,7-dihydro-1H-purine-2,6-dione, especially adenosine 3 receptors (ADORA3). Our initial approach started with pharmacophore screening of ADORA3 modulators; to choose linagliptin (LIN), approved anti-diabetic drug as Dipeptidyl peptidase-4 inhibitors, to be studied for its modulating effect towards ADORA3. This was followed by generation, purification, analytical method development, and structural elucidation of oxidative degraded product (DEG). Both of LIN and DEG showed inhibitory profile against hepatocellular carcinoma cell lines with induction of apoptosis at G2/M phase with increase in caspase-3 levels, accompanied by a downregulation in gene and protein expression levels of ADORA3 with a subsequent increase in cAMP. Quantitative in vitro assessment of LIN binding affinity against ADORA3 was also performed to exhibit inhibitory profile at Ki of 37.7?nM. In silico molecular modelling showing binding affinity of LIN and DEG towards ADORA3 was conducted.  相似文献   
999.
Nicotinic acetylcholine receptors (nAChRs) have vital functions in processes of neurotransmission that underpin key behaviors. These pentameric ligand-gated ion channels have been used as targets for insecticides that constitutively activate them, causing the death of insect pests. In examining a knockout of the Dα1 nAChR subunit gene, our study linked this one subunit with multiple traits. We were able to confirm previous work that had identified Dα1 as a target of the neonicotinoid class of insecticides. Further, we uncovered roles for the gene in influencing mating behavior and patterns of sleep. The knockout mutant was also observed to have a significant reduction in longevity. This study highlighted the severe fitness costs that appear to be associated with the loss of function of this gene in natural populations in the absence of insecticides targeting the Dα1 subunit. Such a fitness cost could explain why target site resistances to neonicotinoids in pest insect populations have been associated specific amino acid replacement mutations in nAChR subunits, rather than loss of function. That mutant phenotypes were observed for the two behaviors examined indicates that the functions of Dα1, and other nAChR subunits, need to be explored more broadly. It also remains to be established whether these phenotypes were due to loss of the Dα1 receptor and/or to compensatory changes in the expression levels of other nAChR subunits.  相似文献   
1000.
After a traumatic insult, macrophages can become activated leading to general inflammation at the site of injury. Activated macrophages are partially regulated by the aryl hydrocarbon receptor (AhR) which when activated suppresses inflammation by limiting the secretion of pro-inflammatory cytokines and promoting the over expression of immuno-modulatory mediators. This study aims to determine whether the low molecular weight fraction of 5% human serum albumin (LMWF5A) and N-acetyl kynurenine (NAK), an N-acetyl tryptophan (NAT) breakdown product in LMWF5A, can regulate inflammation by inhibiting macrophage activation through the AhR since kynurenine is a known AhR agonist. Using LCMS, we demonstrate that NAT is non-enzymatically degraded during accelerated aging of LMWF5A with high heat accelerating degradation. More importantly, NAK is a major degradation product found in LMWF5A. THP-1 monocytes were differentiated into macrophages using phorbol 12-myristate 13-acetate (PMA) and pre-treated with 2-fold dilutions of LMWF5A or synthetic NAK with or without an AhR antagonist (CH223191) prior to overnight stimulation with lipopolysaccharide (LPS). Treatment with LMWF5A caused a 50–70% decrease in IL-6 release throughout the dilution series. A dose-response inhibition of IL-6 release was observed for NAK with maximal inhibition (50%) seen at the highest NAK concentration. Finally, an AhR antagonist partially blocked the anti-inflammatory effect of LMWF5A while completely blocking the effect of NAK. A similar inhibitory effect was observed for CXCL-10, but the AhR antagonist was not effective suggesting additional mechanisms for CXCL-10 release. These preliminary findings suggest that LMWF5A and NAK partially promote the suppression of activated macrophages via the AhR receptor. Therefore, LMWF5A, which contains NAK, is potentially a useful therapeutic in medical conditions where inflammation is prevalent such as trauma, sepsis, and wound healing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号