首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   290篇
  免费   15篇
  国内免费   12篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   7篇
  2014年   25篇
  2013年   21篇
  2012年   14篇
  2011年   15篇
  2010年   22篇
  2009年   19篇
  2008年   21篇
  2007年   21篇
  2006年   16篇
  2005年   9篇
  2004年   6篇
  2003年   6篇
  2002年   6篇
  2001年   1篇
  2000年   3篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1995年   1篇
  1994年   2篇
  1993年   5篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1987年   1篇
  1986年   1篇
  1984年   5篇
  1983年   6篇
  1982年   9篇
  1981年   6篇
  1980年   4篇
  1979年   6篇
  1978年   1篇
  1977年   4篇
  1976年   4篇
  1975年   2篇
  1974年   3篇
排序方式: 共有317条查询结果,搜索用时 31 毫秒
231.
Tcb2 is a calcium‐binding protein that localizes to the membrane‐associated skeleton of the ciliated protozoan Tetrahymena thermophila with hypothesized roles in ciliary movement, cell cortex signaling, and pronuclear exchange. Tcb2 has also been implicated in a unique calcium‐triggered, ATP‐independent type of contractility exhibited by filamentous networks isolated from the Tetrahymena cytoskeleton. To gain insight into Tcb2's structure‐function relationship and contractile properties, we determined solution NMR structures of its C‐terminal domain in the calcium‐free and calcium‐bound states. The overall architecture is similar to other calcium‐binding proteins, with paired EF‐hand calcium‐binding motifs. Comparison of the two structures reveals that Tcb2‐C's calcium‐induced conformational transition differs from the prototypical calcium sensor calmodulin, suggesting that the two proteins play distinct functional roles in Tetrahymena and likely have different mechanisms of target recognition. Future studies of the full‐length protein and the identification of Tcb2 cellular targets will help establish the molecular basis of Tcb2 function and its unique contractile properties. Proteins 2016; 84:1748–1756. © 2016 Wiley Periodicals, Inc.  相似文献   
232.
The effect of aminoacylation and ternary complex formation with elongation factor Tu•GTP on the tertiary structure of yeast tRNAPhe was examined by 1H-NMR spectroscopy. Esterification of phenylalanine to tRNAPhe does not lead to changes with respect to the secondary and tertiary base pair interactions of tRNA. Complex formation of Phe-tRNAPhe with elongation factor Tu•GTP results in a broadening of all imino proton resonances of the tRNA. The chemical shifts of several NH proton resonances are slightly changed as compared to free tRNA, indicating a minor conformational rearrangement of Phe-tRNAPhe upon binding to elongation factor Tu•GTP. All NH proton resonances corresponding to the secondary and tertiary base pairs of tRNA, except those arising from the first three base pairs in the aminoacyl stem, are detectable in the Phe-tRNAPhe•elongation factor Tu•GTP ternary complex. Thus, although the interactions between elongation factor Tu and tRNA accelerate the rate of NH proton exchange in the aminoacyl stem-region, the Phe-tRNAPhe preserves its typical L-shaped tertiary structure in the complex. At high (> 10−4 M) ligand concentrations a complex between tRNAPhe and elongation factor Tu•GDP can be detected on the NMR time-scale. Formation of this complex is inhibited by the presence of any RNA not related to the tRNA structure. Using the known tertiary structures of yeast tRNAPhe and Thermus thermophilus elongation factor Tu in its active, GTP form, a model of the ternary complex was constructed.  相似文献   
233.
We have purified a chloroplast elongation factor Tu (EF-Tu) from tobacco (Nicotiana tabacum) and determined its N-terminal amino acid sequence. Two distinct cDNAs encoding EF-Tu were isolated from a leaf cDNA library of N. sylvestris (the female progenitor of N. tabacum) using an oligonucleotide probe based on the EF-Tu protein sequence. The cDNA sequence and genomic Southern analyses revealed that tobacco chloroplast EF-Tu is encoded by two distinct genes in the nuclear genome of N. sylvestris. We designated the corresponding gene products EF-Tu A and B. The mature polypeptides of EF-Tu A and B are 408 amino acids long and share 95.3% amino acid identity. They show 75–78% amino acid identity with cyanobacterial and chloroplast-encoded EF-Tu species.  相似文献   
234.
Comparative sequence analyses were performed on 14 genes encoding bacterial elongation factors EF-Tu and 7 genes encoding the -subunit of bacterial F1F0 type ATP-synthases. The corresponding predicted amino acid sequences were compared with published primary structures of homologous molecules. Phylogenetic trees were reconstructed from both data sets of aligned protein sequences and from an equivalent selection of 16S rRNA sequences by applying distance matrix and maximum parsimony methods. The EF-Tu data were in very good agreement with the rRNA data, although the resolution within the EF-Tu tree was reduced at certain phylogenetic levels. The resolution power of the ATPase -subunit sequence data were more reduced than those of the EF-Tu data. In comparison with the 16S rRNA tree there are minor differences in the order of adjacent branchings within the ATPase -subunit tree.  相似文献   
235.
The activity of elongation factor Tu (EF-Tu) from Escherichiacoli in eucaryotic protein synthesis systems was investigated. EF-Tu was found to inhibit polyphenylalanine synthesis when incubated with Artemia 80S ribosomes, purified rabbit reticulocyte elongation factor Tu (eEF-Tu) and partially purified reticulocyte translocase enzyme, eEF-G. The inhibition could be overcome by supplying the system with additional eEF-Tu. EF-Tu also inhibited protein synthesis in rabbit reticulocyte lysates. Data presented in this report indicate that inhibition by EF-Tu results from the accumulation of ternary complexes of the protein factor, GTP and aminoacyl-tRNA which do not interact with the ribosomal A-site of 80S ribosomes under physiological conditions.  相似文献   
236.
When human erythrocyte membranes were treated with perfringolysin O (Clostridium perfringens θ-toxin) and examined by electron microscopy after freeze-fracture, two ultrastructural alterations were observed in fracture faces of membrane. (1) A random aggregation of intramembranous particles was seen in the fracture face of the protoplasmic half (PF face) of all membranes treated with the toxin, even if at a low concentration (40 hemolytic units/ml). On the other hand, the aggregation in the fracture face of the exoplasmic half (EF face) was observed only in membranes treated with a high concentration (3300 hemolytic units/ml) for 2 h. (2) Round protrusions and ‘cavities’ with 30 nm in diameter were visible in EF and PF faces of membranes treated with a high concentration, respectively. These structures were always protruded toward cytoplasmic side, but did not appear to form holes through the membrane.Ring and are shaped structures with a dark center of 26 nm and a distinct border of 5 nm in width were observed when the toxin alone was negatively stained at a very high concentration (170 000 hemolytic units/ml). These structures were also produced in the presence of cholesterol even if the toxin concentration was low.  相似文献   
237.
Linkage mapping and partial sequencing of 10 cDNA loci in the chicken   总被引:1,自引:0,他引:1  
Ten cDNA clones derived from chicken spleen cell mRNA have been partially sequenced and the genes which encode the mRNAs have been located within the linkage map of the chicken genome. The sequences of five of these clones show strong homology to known mammalian genes, the remainder show little homology to sequences present in the current databases. Interestingly, one of these clones appears to be the chicken homologue of the mammalian peptide transporter gene TAP2 and is located within the major histocompatibility complex. Two other clones are homologous to genes involved in protein synthesis and these are tightly linked in chickens, as in mice. These results suggest that partial sequencing and mapping of clones from selective cDNA libraries may be an efficient way of adding candidate genes to the chicken linkage map and that on a local scale there may be some conservation of grouping of genes between chickens and mammalian species.  相似文献   
238.
Bacteriophage T4 capsid is a prolate icosahedron composed of the major capsid protein gp23*, the vertex protein gp24*, and the portal protein gp20. Assembled on its surface are 810 molecules of the non-essential small outer capsid protein, Soc (10 kDa), and 155 molecules of the highly antigenic outer capsid protein, Hoc (39 kDa). In this study Soc, a "triplex" protein that stabilizes T4 capsid, is targeted for molecular engineering of T4 particle surface. Using a defined in vitro assembly system, anthrax toxins, protective antigen, lethal factor and their domains, fused to Soc were efficiently displayed on the capsid. Both the N and C termini of the 80 amino acid Soc polypeptide can be simultaneously used to display antigens. Proteins as large as 93 kDa can be stably anchored on the capsid through Soc-capsid interactions. Using both Soc and Hoc, up to 1662 anthrax toxin molecules are assembled on the phage T4 capsid under controlled conditions. We infer from the binding data that a relatively high affinity capsid binding site is located in the middle of the rod-shaped Soc, with the N and C termini facing the 2- and 3-fold symmetry axes of the capsid, respectively. Soc subunits interact at these interfaces, gluing the adjacent capsid protein hexamers and generating a cage-like outer scaffold. Antigen fusion does interfere with the inter-subunit interactions, but these interactions are not essential for capsid binding and antigen display. These features make the T4-Soc platform the most robust phage display system reported to date. The study offers insights into the architectural design of bacteriophage T4 virion, one of the most stable viruses known, and how its capsid surface can be engineered for novel applications in basic molecular biology and biotechnology.  相似文献   
239.
Elongation factor G (EF-G) promotes the translocation of tRNA and mRNA in the central cavity of the ribosome following the addition of each amino acid residue to a growing polypeptide chain. tRNA/mRNA translocation is coupled to GTP hydrolysis, catalyzed by EF-G and activated by the ribosome. In this study we probed EF-G interactions with ribosomal proteins (r-proteins) of the bacterial ribosome, by using a combination of chemical crosslinking, immunoblotting and mass spectroscopy analyses. We identified three bacterial r-proteins (L7/L12, S12 and L6) crosslinked to specific residues of EF-G in three of its domains (G', 3 and 5, respectively). EF-G crosslinks to L7/L12 and S12 were indistinguishable when EF-G was trapped on the ribosome before or after tRNA/mRNA translocation had occurred, whereas a crosslink between EF-G and L6 formed with greater efficiency before translocation had occurred. EF-G crosslinked to L7/L12 was capable of catalyzing multiple rounds of GTP hydrolysis, whereas EF-G crosslinked to S12 was inactive in GTP hydrolysis. These results imply that during the GTP hydrolytic cycle EF-G must detach from S12 within the central cavity of the ribosome, while EF-G can remain associated with L7/L12 located on one of the peripheral stalks of the ribosome. This mechanism may ensure that a single GTP molecule is hydrolyzed for each tRNA/mRNA translocation event.  相似文献   
240.
In eubacteria, ribosome stalling during protein synthesis is rescued by a tmRNA-derived trans-translation system. Because ribosomal protein S1 specifically binds to tmRNA with high affinity, it is considered to be involved in the trans-translation system. However, the role of S1 in trans-translation is still unclear. To study the function of S1 in the trans-translation system, we constructed an S1-free cell-free translation system. We found that trans-translation proceeded even in the absence of S1. Addition of S1 into the S1-free system did not affect trans-translation efficiency. These results suggest that S1 does not play a role in the trans-translation machinery.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号