首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  15篇
  2022年   1篇
  2019年   1篇
  2018年   3篇
  2014年   1篇
  2012年   1篇
  2010年   3篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   1篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.

Background

Enteroaggregative Escherichia coli (EAEC) is one of the most common bacterial pathogens associated with the etiology of persistent diarrhea. A characteristic feature of EAEC-pathogenesis is the induction of profound inflammatory response in the intestinal epithelium. The present study was designed to investigate the underlying mechanism of inflammatory responses induced by a novel galactose specific adhesin of T7 strain of EAEC (EAEC-T7) in human intestinal epithelial cell line (INT-407).

Methods

INT-407 cells were stimulated with the adhesin in the absence and presence of anti-adhesin (IgGAD)/d-galactose/H7/staurosporin (inhibitor of PKC)/PD098059 (inhibitor of MEK)/SB203580 (inhibitor of p38-MAPkinase)/AG490 (inhibitor of JAK (-2,-3)/STAT-3 pathway). The expression of activated Raf-1, MEK-1, ERK1/2, JNK, p38-MAPK and STAT-3 was analyzed by Western immunoblot. Release of interleukin-8 (IL-8) was measured by ELISA.

Results

The adhesin was found to induce activation of Raf-1, MEK-1, ERK1/2, p38-MAPK and STAT-3, which was reduced in the presence of IgGAD/d-galactose. The activation of Raf-1 was found to be attenuated in the presence of H7/staurosporin. The expression of phosphorylated STAT-3 was downregulated in the presence of AG490 and PD098059. Further, the adhesin induced IL-8 secretion was reduced in the presence of the inhibitors of MEK (PD098059), p38-MAPK (SB203580) and JAK (-2,-3)/STAT-3 pathway (AG490).

Conclusions

We propose that STAT-3 activation is quintessential for the galactose specific adhesin induced IL-8 secretion by INT-407 cells and must occur in concert with the activation of ERK1/2.

General significance

Our contribution regarding the galactose specific adhesin mediated signaling leads to an improved understanding of the EAEC-pathogenesis and may provide novel therapeutic approaches to combat EAEC infection.  相似文献   
12.
Enteroaggregative Escherichia coli (EAEC) is an emerging cause of pediatric and adult travellers diarrhea. The mechanism by which EAEC induce diarrhea is not completely known. Two serine protease autotransporter proteins, named Pet and Pic have been identified in EAEC strains. Pet has enterotoxic and cytotoxic activities, while the role of Pic in pathogenesis may lie on its mucinolytic activity. Little is known about Pet and Pic biological activities in vivo. In this study the antibody responses against these autotransporter proteins in convalescent children is investigated. Fifteen (83%) children showed specific antibodies against Pet or Pic in their sera. IgG and IgM antibodies were the main isotype found. Specific antibodies against Pic, but not against Pet, were detected in sera from age-matched control group. These data show that specific anti-Pet and anti-Pic antibodies are produced during the course of a natural EAEC infection in children.  相似文献   
13.
Autotransporters (ATs) represent a superfamily of proteins produced by a variety of pathogenic bacteria, which include the pathogenic groups of Escherichia coli (E. coli) associated with gastrointestinal and urinary tract infections. We present the first X-ray structure of the passenger domain from the Plasmid-encoded toxin (Pet) a 100 kDa protein at 2.3 Å resolution which is a cause of acute diarrhea in both developing and industrialized countries. Pet is a cytoskeleton-altering toxin that induces loss of actin stress fibers. While Pet (pdb code: 4OM9) shows only a sequence identity of 50% compared to the closest related protein sequence, extracellular serine protease plasmid (EspP) the structural features of both proteins are conserved. A closer structural look reveals that Pet contains a β-pleaded sheet at the sequence region of residues 181–190, the corresponding structural domain in EspP consists of a coiled loop. Secondary, the Pet passenger domain features a more pronounced beta sheet between residues 135 and 143 compared to the structure of EspP.  相似文献   
14.
EAEC is increasingly recognized as an emerging enteric pathogen. Typical EAEC expressing the AggR regulon have been proven to be an important cause of childhood diarrhea in industrialized countries as well as in the developing world, while atypical EAEC without this regulon have not been thoroughly investigated. To investigate the bacteriological characteristics of EAEC, including both typical and atypical strains in Kagoshima, Japan, 2417 E. coli strains from Japanese children with diarrhea were screened by a quantitative biofilm assay to detect possible EAEC strains, resulting in the identification of 102 (4.2%) of these strains by the HEp‐2 cell adherence test. Virulence gene patterns, PFGE analysis and O‐serogrouping demonstrated the heterogeneity of the EAEC. The EAEC strains were classified into two groups: typical EAEC with aggR (74.5%, 76/102) and atypical EAEC without aggR (25.5%, 26/102). There was no significant difference between the typical EAEC strains (median OD570= 0.73) and the atypical strains (median OD570= 0.61) in biofilm formation (P= 0.17). Incidences of resistance against ampicillin, cefotaxime and tetracycline were significantly higher in the typical EAEC strains than the atypical EAEC strains (84.2% vs. 53.8%, 36.8% vs. 7.7% and 93.4% vs. 73.1%, respectively, P < 0.05). The typical EAEC strains showed significantly higher resistance ratios against HCl and lactate than the atypical strains (94.7% vs. 61.5% and 92.1% vs. 57.7%, respectively, P < 0.001). To investigate the pathogenicity of not only typical but also atypical EAEC, further bacteriological and epidemiologic studies including atypical EAEC are needed.  相似文献   
15.
Enteroaggregative Escherichia coli (EAEC) are important intestinal pathogens causing acute and persistent diarrhoeal illness worldwide. Although many putative EAEC virulence factors have been identified, their association with pathogenesis remains unclear. As environmental cues can modulate bacterial virulence, we investigated the effect of oxygen and human intestinal epithelium on EAEC virulence gene expression to determine the involvement of respective gene products in intestinal colonisation and pathogenesis. Using in vitro organ culture of human intestinal biopsies, we established the colonic epithelium as the major colonisation site of EAEC strains 042 and 17‐2. We subsequently optimised a vertical diffusion chamber system with polarised T84 colon carcinoma cells for EAEC infection and showed that oxygen induced expression of the global regulator AggR, aggregative adherence fimbriae, E. coli common pilus, EAST‐1 toxin, and dispersin in EAEC strain 042 but not in 17‐2. Furthermore, the presence of T84 epithelia stimulated additional expression of the mucinase Pic and the toxins HlyE and Pet. This induction was dependent on physical host cell contact and did not require AggR. Overall, these findings suggest that EAEC virulence in the human gut is modulated by environmental signals including oxygen and the intestinal epithelium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号