首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11268篇
  免费   605篇
  国内免费   564篇
  12437篇
  2023年   119篇
  2022年   178篇
  2021年   257篇
  2020年   236篇
  2019年   329篇
  2018年   298篇
  2017年   257篇
  2016年   266篇
  2015年   314篇
  2014年   609篇
  2013年   825篇
  2012年   527篇
  2011年   632篇
  2010年   473篇
  2009年   594篇
  2008年   606篇
  2007年   606篇
  2006年   562篇
  2005年   555篇
  2004年   485篇
  2003年   425篇
  2002年   357篇
  2001年   256篇
  2000年   191篇
  1999年   209篇
  1998年   200篇
  1997年   167篇
  1996年   150篇
  1995年   139篇
  1994年   117篇
  1993年   111篇
  1992年   96篇
  1991年   86篇
  1990年   84篇
  1989年   65篇
  1988年   67篇
  1987年   52篇
  1986年   58篇
  1985年   91篇
  1984年   168篇
  1983年   100篇
  1982年   101篇
  1981年   76篇
  1980年   74篇
  1979年   65篇
  1978年   41篇
  1977年   42篇
  1976年   35篇
  1975年   29篇
  1974年   23篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
992.
兰萼丙素的结构   总被引:3,自引:0,他引:3  
从北京地区产兰萼香茶菜[Rabdosia japonica (Burm. f.)Hara var.glaucocalyx(Maxim.)Hara]叶中分得三个对映-贝壳杉烯二萜化合物,其中二个为已知物兰萼甲素(2)和乙素(3),另一个为新化合物,命名为兰萼丙素,经光谱和化学方法证明,其结构为对映-7β,14α,15α-三羟基-16-贝壳杉烯-3-酮(1)。  相似文献   
993.
Plant allocation patterns may affect soil C and N storage due to differences in litter quality and the depth of plant C and N inputs into the soil. We studied the dynamics of dual-labeled (13C/15N) Pinus ponderosa needles and fine roots placed at two soil depths (O and A horizon) in a temperate conifer forest soil during 2 y. Input of C as fine roots resulted in much more C retained in soil (70.5 ± 2.2% of applied) compared with needle C (42.9 ± 1.3% of applied) after 1.5 y. Needles showed faster mass loss, rates of soil 13CO2 efflux, and more 15N immobilized into microbial biomass than did fine roots. The larger proportion of labile C compounds initially present in needles (17% more needle C was water soluble than in fine roots) likely contributed to its shorter C residence time and greater degree of transformation in the soil. A double exponential decay function best described the rate of 13C loss, with a smaller initial pulse of C loss from fine roots (S1k1) and a slower decay rate of the recalcitrant C pool for fine roots (0.03 y−1) compared with (0.19 y−1) for needles. Soil 13C respiration, representing heterotrophic respiration of litter C, was much more seasonal from the O horizon than from the A. However, offsetting seasonal patterns in 13C dynamics in the O horizon resulted in no net effect of soil depth on total 13C retention in the soil after 1.5 y for either litter. Almost 90% of applied litter N was retained in the soil after 1.5 y, independent of litter quality or soil depth. Very small amounts of 13C or 15N (<3% of applied) moved to the horizon above or below the placement depth (i.e., O to A or A to O). Our results suggest that plant allocation belowground to fine roots results in more C retained and less N mineralized compared with allocation aboveground to needles, primarily due to litter quality differences.  相似文献   
994.
The amplification of gltA gene encoding citrate synthase of TCA cycle was required for the efficient conversion of acetyl-CoA, generated during vanillin production from ferulic acid, to CoA, which is essential for vanillin production. Vanillin of 1.98 g/L was produced from the E. coli DH5alpha (pTAHEF-gltA) with gltA amplification in 48 h of culture at 3.0 g/L of ferulic acid, which was about twofold higher than the vanillin production of 0.91 g/L obtained by the E. coli DH5alpha (pTAHEF) without gltA amplification. The icdA gene encoding isocitrate dehydrogenase of TCA cycle was deleted to make the vanillin producing E. coli utilize glyoxylate bypass which enables more efficient conversion of acetyl-CoA to CoA in comparison with TCA cycle. The production of vanillin by the icdA null mutant of E. coli BW25113 harboring pTAHEF was enhanced by 2.6 times. The gltA amplification of the glyoxylate bypass in the icdA null mutant remarkably increased the production rate of vanillin with a little increase in the amount of vanillin production. The real synergistic effect of gltA amplification and icdA deletion was observed with use of XAD-2 resin reducing the toxicity of vanillin produced during culture. Vanillin of 5.14 g/L was produced in 24 h of the culture with molar conversion yield of 86.6%, which is the highest so far in vanillin production from ferulic acid using recombinant E. coli.  相似文献   
995.
Inducible nitric-oxide synthase (iNOS, NOS2) plays a prominent role in macrophage bactericidal and tumoricidal activities. A relatively large amount of NO produced via iNOS, however, also targets the macrophage itself for apoptotic cell death. To uncover the intrinsic mechanisms of iNOS regulation, we have characterized the SPRY domain- and SOCS box-containing protein 1 (SPSB1), SPSB2, and SPSB4 that interact with the N-terminal region of iNOS in a D-I-N-N-N sequence-dependent manner. Fluorescence microscopy revealed that these SPSB proteins can induce the subcellular redistribution of iNOS from dense regions to diffused expression in a SOCS box-dependent manner. In immunoprecipitation studies, both Elongin C and Cullin-5, components of the multi-subunit E3 ubiquitin ligase, were found to bind to iNOS via SPSB1, SPSB2, or SPSB4. Consistently, iNOS was polyubiquitinated and degraded in a proteasome-dependent manner when SPSB1, SPSB2, or SPSB4 was expressed. SPSB1 and SPSB4 had a greater effect on iNOS regulation than SPSB2. The iNOS N-terminal fragment (residues 1-124 of human iNOS) could disrupt iNOS-SPSB interactions and inhibit iNOS degradation. In lipopolysaccharide-treated macrophages, this fragment attenuated iNOS ubiquitination and substantially prolonged iNOS lifetime, resulting in a corresponding increase in NO production and enhanced NO-dependent cell death. These results not only demonstrate the mechanism of SPSB-mediated iNOS degradation and the relative contributions of different SPSB proteins to iNOS regulation, but also show that iNOS levels are sophisticatedly regulated by SPSB proteins in activated macrophages to prevent overproduction of NO that could trigger detrimental effects, such as cytotoxicity.  相似文献   
996.
997.
Cullin-RING ubiquitin ligases (CRLs) are the largest family of E3 ligases and require cullin neddylation for their activation. The NEDD8-activating enzyme inhibitor MLN4924 reportedly blocked cullin neddylation and inactivated CRLs, which resulted in apoptosis induction and tumor suppression. However, CRL roles in ovarian cancer cell survival and the ovarian tumor repressing effects of MLN4924 are unknown. We show here that CRL4 components are highly expressed in human epithelial ovarian cancer tissues. MLN4924-induced DNA damage, cell cycle arrest, and apoptosis in ovarian cancer cells in a time- and dose-dependent manner. In addition, MLN4924 sensitized ovarian cancer cells to other chemotherapeutic drug treatments. Depletion of CRL4 components Roc1/2, Cul4a, and DDB1 had inhibitory effects on ovarian cancer cells similar to MLN4924 treatment, which suggested that CRL4 inhibition contributed to the chemotherapeutic effect of MLN4924 in ovarian cancers. We also investigated for key CRL4 substrate adaptors required for ovarian cancer cells. Depleting Vprbp/Dcaf1 did not significantly affect ovarian cancer cell growth, even though it was expressed by ovarian cancer tissues. However, depleting Cdt2/Dcaf2 mimicked the pharmacological effects of MLN4924 and caused the accumulation of its substrate, CDT1, both in vitro and in vivo. MLN4924-induced DNA damage and apoptosis were partially rescued by Cdt1 depletion, suggesting that CRL4CDT2 repression and CDT1 accumulation were key biochemical events contributing to the genotoxic effects of MLN4924 in ovarian cancer cells. Taken together, these results indicate that CRL4CDT2 is a potential drug target in ovarian cancers and that MLN4924 may be an effective anticancer agent for targeted ovarian cancer therapy.  相似文献   
998.
Summary Selection in the F3 generation for seed yield, fruiting branches/plant, effective pods/plant, and seed index (100-seed weight) was carried out in two chickpea crosses. Sixty F5 lines (15 lines/selection criterion) along with check variety were evaluated for seed yield in three distinct environments. The effects of selection criteria on yield stability was examined using linear regression approach and genotype-grouping technique. There were no differences between selection criteria for linear yield responses of F5 lines to different environments. Within all four selection criteria the lines showed similar linear responses. The non-linear component was relatively higher for lines selected for effective pods and seed index than lines selected for yield and fruiting branches. On the basis of mean yield and coefficient of variation across environments, the seed index was the least effective selection criterion for developing high yielding and stable lines. When the results of stability parameters and genotype-grouping technique were considered together, selection for yield and fruiting branches was highly effective for isolating stable and high yielding lines.  相似文献   
999.
Summary 1. We have previously shown that acute exposure to the HIV coat protein gp120 interferes with the -adrenergic regulation of astroglial and microglial cells (Leviet al., 1993). In particular, exposure to 100 pM gp120 for 30 min depressed the phosphorylation of vimentin and glial fibrillary acidic protein (GFAP) induced by isoproterenol in rat cortical astrocyte cultures. In the present study we have extended our analysis on the effects of gp120 on astroglial protein phosphorylation.2. We found that chronic (3-day) treatment of the cells with 100 pM gp120 before exposure to isoproterenol was substantially more effective than acute treatment in depressing the stimulatory effect of the -adrenergic agonist on vimentin and GFAP phosphorylation.3. Even after chronic treatment with gp120, no differences were found in the levels and solubility of these proteins.4. Besides stimulating the phosphorylation of intermediate filament proteins, isoproterenol inhibited the incorporation of32P into a soluble acidic protein of 80,000M r , which was only minimally present in Triton X-100-insoluble extracts.5. Treatment of astrocytes with a phorbol ester or exposure to3H-myristic acid indicated that the acidic 80,000M r protein is a substrate for protein kinase C (PKC) and is myristoylated, thus suggesting that it is related to the MARCKS family of PKC substrates.6. Acute (30-min) treatment with 100 pM gp120 totally prevented the inhibitory effect of isoproterenol on the phorphorylation of the 80,000M r MARCKS-like protein.7. Our studies corroborate the hypothesis that viral components may contribute to the neuropathological changes observed in AIDS through the alteration of signal transduction systems in glial cells.  相似文献   
1000.
Vitamins C and E Modulate Neuronal Potassium Currents   总被引:1,自引:0,他引:1  
We investigated the effects of vitamins C and E on the delayed-rectifier potassium current (IKDR), which is important in repolarizing the membrane potential, and on the transient A-type potassium current (IKA), which regulates neuronal firing frequency. The whole-cell patch-clamp technique was used to measure the currents from cultured Drosophila neurons derived from embryonic neuroblasts. The membrane potential was stepped to different voltages between −40 and +60 mV from a holding potential of −80 mV. IKDR and IKA measured in the vitamin C-containing solution (IKDR 305 ± 16 pA, IKA 11 ± 2 pA) were smaller than those measured in the control solution (488 ± 21 pA, IKA 28 ± 3 pA). By contrast, IKDR and IKA measured in the vitamin E-containing solution (IKDR 561 ± 21 pA, IKA 31 ± 3 pA) were greater than those measured in the control solution (422 ± 15 pA, 17 ± 2 pA). These results indicate that vitamins C and E can modulate potassium current amplitudes and possibly lead to altered neuronal excitability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号