首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17549篇
  免费   2477篇
  国内免费   4150篇
  24176篇
  2024年   147篇
  2023年   549篇
  2022年   470篇
  2021年   479篇
  2020年   746篇
  2019年   807篇
  2018年   897篇
  2017年   927篇
  2016年   911篇
  2015年   856篇
  2014年   964篇
  2013年   1195篇
  2012年   714篇
  2011年   899篇
  2010年   651篇
  2009年   983篇
  2008年   987篇
  2007年   1000篇
  2006年   1068篇
  2005年   950篇
  2004年   804篇
  2003年   764篇
  2002年   683篇
  2001年   548篇
  2000年   507篇
  1999年   466篇
  1998年   435篇
  1997年   365篇
  1996年   329篇
  1995年   332篇
  1994年   320篇
  1993年   274篇
  1992年   292篇
  1991年   207篇
  1990年   199篇
  1989年   152篇
  1988年   163篇
  1987年   128篇
  1986年   139篇
  1985年   157篇
  1984年   118篇
  1983年   68篇
  1982年   124篇
  1981年   104篇
  1980年   79篇
  1979年   71篇
  1978年   31篇
  1977年   31篇
  1976年   30篇
  1973年   15篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
Hydrilla verticillata (L. f.) Royle tubers from monoecious plants andPotamogeton gramineus L. winter buds were sprouted and allowed to grow in the dark for 120 days. We measured plant length and counted the number of leaves at 2–3 day intervals.Hydrilla grew most rapidly during the first 16–17 days andPotamogeton grew most rapidly during the first 16–25 days. Measurement of propagule carbon content over time indicated that cessation of rapid growth coincided with depletion of tuber carbon by one-half forHydrilla. ForPotamogeton, growth was reduced after 16 to 25 days while the winter bud C half-life was 37 days. Calculations indicated thatHydrilla mobilized 49% andPotamogeton 39% of the initial propagule carbon to support growth. In a second experiment, in which plants were grown in substrate the plants grew taller and produced slightly more leaves per plant.Potamogeton removed from darkness after specified time periods, and allowed to grow for 21 days in a greenhouse recovered from 20–30 days in the dark. Similarly treatedHydrilla plants recovered from up to 80 days in the dark.Potamogeton had mobilized 79% of initial C by the time it was unable to recover from the dark treatment. Combined results for both species indicate that the majority of propagule C was utilized in the first 16 to 30 days following sprouting. In conjunction with an understanding propagule sprouting requirements, this information will be useful in the timing of application for management techniques. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   
102.
Dissolved organic carbon (DOC) dynamics were examined over five years (1989–1993) in Sycamore Creek, a Sonoran Desert stream, specifically focusing on DOC concentration in surface and hyporheic waters, and rates of export. In 1989 and 1990, the years of lowest stream discharge (0.08 and 0.04 m3 s–1 annual mean of daily discharge, respectively), DOC was high, averaging 7.37 and 6.22 mgC l–1 (weighted annual means). In contrast, from 1991 through 1993, a period of increased flow (1.1, 1.2 and 4.3 m3 s–1), concentration was significantly lower (P<0.001) with annual mean concentrations of 3.54, 3.49 and 3.39 mgC l–1. Concentration exhibited little spatial variation between two sampling stations located 6 km apart along the mainstem or between surface and hyporheic waters. Annual export of DOC from Sycamore Creek varied 100-fold over the five-year period from a mean rate of only 24 kgC d–1 in 1990 to 2100 kgC d–1 in 1993. Ninety percent of DOC was exported by flows greater than 2.8 m3 s–1, and 50% during flows greater than 27 m3 s–1; flows of 2.8 and 24 m3 s–1 occurred only 9 and 1% of the time. The export of organic matter in Sycamore Creek appears to be coupled to El Niño-Southern Oscillation phenomena. The years of highest export, 1991–1993, had El Niño conditions while 1989 and 1990 had medial conditions.  相似文献   
103.
Forest density expressing the stocking status constitutes the major stand physiognomic parameter of Indian forest. Density and age are often taken as surrogate to structural and compositional changes that occur with the forest succession. Satellite remote sensing spectral response is reported to provide information on structure and composition of forest stands. The various vegetation indices are also correlated with forest canopy closure. The paper presents a three way crown density model utilizing the vegetation indices viz., advanced vegetation index, bare soil index and canopy shadow index for classification of forest crown density. The crop and water classes which could not be delineated by the model were finally masked from normalized difference vegetation index and TM band 7 respectively. The rule based approach has been implemented for land use and forest density classification. The broad land cover classification accuracy has been found to be 91.5%. In the higher forest density classes the classification accuracy ranged between 93 and 95%, whereas in the lower density classes it was found to be between 82 and 85%.  相似文献   
104.
The circumstances that led to the discovery that plants luminesce after they are illuminated are described, as are other discoveries that would not have been possible were it not for the fortuitous association I had with my dear and most admirable friend, W.A. Arnold, to whom this special issue is dedicated.  相似文献   
105.
Abstract: Possible effects on the physiological activity and culturability of soil microorganisms by different soil dispersion procedures, and effects on activity caused by extracting bacteria from soil, were investigated. There was no apparent difference in cfu's with dispersion of a silty loam soil and a loamy sand soil with pyrophosphate as compared to dispersion in NaCl. Substrate-induced respiration was reduced in the silty loam soil, and methanol oxidation was reduced in the loamy sand soil with dispersion in pyrophosphate, and the soil pH was irreversibly increased by the treatment. Extracted bacterial fractions had lower numbers of culturable cells as percentage of the total number of bacteria in each fraction, lower respiration rates and no methanol oxidation activity as compared to the soil slurry both before and after extraction. The physiological activity was apparently not affected by the number of cells extracted. This indicates that the increased extraction rate of indigenous soil bacteria obtained by effective disruption of aggregates and detachment of cells from surfaces, only results in increased extraction of cells that have been physiologically changed as a result of the extraction process.  相似文献   
106.
Homoionic Na-, Ca-, and Al-clays were prepared from the <2 m fractions of Georgia kaolinite and Wyoming bentonite and mixed with sand to give artificial soils with 5, and 25% clay. The artificial soils were inoculated with microbes from a natural soil before incubation. Unlabelled and uniformly13C-labelled (99.9% atom) glucose were incorporated into the artificial soils to study the effects of clay types, exchangeable cations and clay contents on the mineralization of glucose-carbon and glucose-derived organic materials. Chemical transformation of glucose-carbon upon incorporation into microbial products and metabolites, was followed using solid-state13C CP/MAS NMR spectroscopy.There was a significant influence of exchangeable cations on the mineralization of glucose-carbon over a period of 33 days. At 25% clay content, mineralization of glucose-carbon was highest in Ca-soils and lowest in Al-soils. The influence of exchangeable cations on mineralization of glucose-carbon was more pronounced in soils with bentonite clay than those with kaolinite clay. Statistical analysis of data showed no overall effect of clay type on mineralization of glucose-carbon. However, the interactions of clay type with clay content and clay type with clay content and exchangeable cations were highly significant. At 25% clay content, the mineralization of glucose-carbon was significantly lower in Na- and Al-soils with Wyoming bentonite compared with Na- and Al-soils with Georgia kaolinite. For Ca-soils this difference was not significant. Due to the increased osmotic tension induced by the added glucose, mineralization of glucose-carbon was slower in soils with 5% clay than soils with 25% clay.Despite the differences in the chemical and physical characteristics of soils with Ca-, Na- and Al-clays, the chemical composition of organic materials synthesised in these soils were similar in nature. Assuming CP/MAS is quantitative, incorporation of uniformly13C-labelled glucose (99.9% atom) in these soils resulted in distribution of carbon in alkyl (24–25%), O-alkyl (56–63%), carbonyl (11–15%) and small amounts of aromatic and olefinic carbon (2–4%). However, as decomposition proceeded, the chemistry of synthesised material showed some changes with time. In the Ca- and Na-soils, the proportions of alkyl and carbonyl carbon decreased and that of O-alkyl carbon increased with time of incubation. However, the opposite trend was found for the Al-soil.Proton-spin relaxation editing (PSRE) subspectra clearly showed heterogeneity within the microbial products. Subspectra of the slowly-relaxing (long T1(H)) domains were dominated by alkyl carbon in long- and short-chain structures. The signals due to N-alkyl (55 ppm) and carbonyl carbon were also strong in these subspectra. These subspectra were very similar to those obtained for microbial and fungal materials and were probably microbial tissues attached to clay surfaces by polysaccharide extracellular mucilage. Subspectra of fast-relaxing (short T1(H)) domains comprised mostly O-alkyl and carbonyl carbon and were probably microbial metabolites released as neutral and acidic sugars into the extracellular environment, and strongly sorbed by clay surfaces.  相似文献   
107.
We studied the effects of atmospheric CO2 enrichment (280, 420 and 560 l CO2 l–1) and increased N deposition (0,30 and 90 kg ha–1 year–1) on the spruce-forest understory species Oxalis acetosella, Homogyne alpina and Rubus hirtus. Clones of these species formed the ground cover in nine 0.7 m2 model ecosystems with 5-year-old Picea abies trees (leaf area index of approx 2.2). Communities grew on natural forest soil in a simulated montane climate. Independently of N deposition, the rate of light-saturated net photosynthesis of leaves grown and measured at 420 l CO2 l–1 was higher in Oxalis and in Homogyne, but was not significantly different in Rubus compared to leaves grown and measured at the pre-industrial CO2 concentration of 280 l l–1. Remarkably, further CO2 enrichment to 560 l l–1 caused no additional increase of CO2 uptake. With increasing CO2 supply concentrations of non-structural carbohydrates in leaves increased and N concentrations decreased in all species, whereas N deposition had no significant effect on these traits. Above-ground biomass and leaf area production were not significantly affected by elevated CO2 in the more vigorously growing species O. acetosella and R. hirtus, but the slow growing H. alpina produced almost twice as much biomass and 50% more leaf area per plant under 420 l CO2 l–1 compared to 280 l l–1 (again no further stimulation at 560 l l–1). In contrast, increased N addition stimulated growth in Oxalis and Rubus but had no effect on Homogyne. In Oxalis (only) biomass per plant was positively correlated with microhabitat quantum flux density at low CO2, but not at high CO2 indicating carbon saturation. On the other hand, the less shade-tolerant Homogyne profited from CO2 enrichment at all understory light levels facilitating its spread into more shady micro-habitats under elevated CO2. These species-specific responses to CO2 and N deposition will affect community structure. The non-linear responses to elevated CO2 of several of the traits studied here suggest that the largest responses to rising atmospheric CO2 are under way now or have already occurred and possible future responses to further increases in CO2 concentration are likely to be much smaller in these understory species.  相似文献   
108.
Turnover of organic nitrogen in soils and its availability to crops   总被引:4,自引:0,他引:4  
K. Mengel 《Plant and Soil》1996,178(1):83-93
The root development of barley seedlings grown for one week in an aerated nutrient solution was studied in the presence of dissolved organic matter from an aqueous chestnut leaf litter extract. In particular, the different effects of low and high molecular weight fractions (small molecules: molecular weight <1000; large molecules: >10,000) of the leaf litter extract were examined. In the presence of large molecules root growth was inhibited, an irregular root tip morphology was observed, and Ca and Mg concentrations in the shoots were lower than in control plants. These phytotoxic effects were not caused by the formation of an impermeable layer of large molecules on the root surfaces that lower accessibility for nutrient cations as inferred from voltammetric experiments. A germination assay using spruce seeds, however, indicated allelochemical effects of large molecules, which exhibit a higher aromaticity than the small molecules as indicated by spectroscopic characterisation. In the growth experiments with small molecules, no influence on the root development of barley was evident, but an increase of Ca and Mg in the shoots was detected. During these growth experiments, a large amount of the small molecules, mainly simple phenols and amino acids, disappeared from the nutrient solution. The loss of small molecules was most likely the effect of mineralisation.Abbreviations DOC dissolved organic carbon - DOM dissolved organic matter - LLE leaf litter extract - MW molecular weight - HMDE hanging mercury drop electrode  相似文献   
109.
A telescopic method for photographing within 8×8 cm minirhizotrons   总被引:1,自引:0,他引:1  
The volatile organic compounds produced during a sequence of soil incubations under controlled conditions, with either added NH4 +-N or NO3 --N, were collected and identified. The nature and relative amounts of the volatile organic compounds produced by the microorganisms in the soils were remarkably reproducible and consistent.  相似文献   
110.
This study examined the temporal patterns of establishment, suppression, and release of major tree species in two old-growth Ohio forest remnants as a means to determine the past disturbance history of these forests. Increment cores were taken from a total of 154 trees from two well-drained, upland plots and two poorly-drained, bottomland plots in each of the two forested areas. Acer saccharum and Fagus grandifolia exhibited multiple episodes of suppression and release prior to becoming canopy trees, and could tolerate suppressions as long as 84 years. In contrast, Quercus macrocarpa, Q. muehlenbergii, Prunus serotina, and Acer saccharinum rerely exhibited any tolerance to suppression and appeared to have entered the canopy after single disturbances had opened large areas of canopy. There was clear synchrony in the temporal pattern of establishment and final release from suppression among trees from bottomland plots scattered throughout the stands, indicating that relatively large disturbances were important in these poorly-drained areas. In contrast, there was little synchrony among trees from well-drained upland plots, except in a single instance where selective cutting of Quercus trees opened the canopy. Thus, the canopy of upland site was likely subjected only to small disturbances resulting from the death of one or a few trees. At the whole of forest level, there was evidence of episodic recruitment of canopy trees in both forests. Establishment of Fraxinus spp. and Quercus spp. were particularly episodic, and few Fraxinus or Quercus trees alive today established during the last century. These data suggest that large disturbances have affected canopy dynamics of both upland and bottomland areas prior to 1900 and in bottomland forests through this century. In contrast, disturbances in upland areas during this century have been restricted to small, treefall-generated canopy gaps.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号