首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3472篇
  免费   185篇
  国内免费   81篇
  2024年   5篇
  2023年   51篇
  2022年   108篇
  2021年   120篇
  2020年   137篇
  2019年   159篇
  2018年   165篇
  2017年   110篇
  2016年   102篇
  2015年   100篇
  2014年   329篇
  2013年   333篇
  2012年   245篇
  2011年   334篇
  2010年   243篇
  2009年   170篇
  2008年   151篇
  2007年   146篇
  2006年   118篇
  2005年   96篇
  2004年   81篇
  2003年   70篇
  2002年   70篇
  2001年   31篇
  2000年   22篇
  1999年   25篇
  1998年   19篇
  1997年   20篇
  1996年   15篇
  1995年   11篇
  1994年   14篇
  1993年   14篇
  1992年   13篇
  1991年   11篇
  1990年   7篇
  1989年   4篇
  1988年   7篇
  1987年   5篇
  1986年   2篇
  1985年   5篇
  1984年   13篇
  1983年   16篇
  1982年   9篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1973年   2篇
排序方式: 共有3738条查询结果,搜索用时 31 毫秒
131.
Orientia tsutsugamushi (Ott) is a causative agent of chigger‐borne zoonosis, scrub typhus which is life threatening and highly pervasive illness in humans. In this report, we have mined and classified the proteins involved in pathways unique to Ott by using high‐throughput computational techniques. The 12 metabolic pathways were found to be unique to the pathogen. Forty‐six proteins were reported to be essential for the pathogen's survival and non‐homologous to the humans. The proteins were categorized into different classes, ie, enzymes, transporters, DNA‐binding, secretory, and outer membrane proteins. Further, in silico analysis of 46 proteins showed that 25 proteins were suitable therapeutic targets with known druggable properties. The structural modeling of B3CSG3 (MurA) protein was carried out and catalytic site essential for its functioning was analyzed. Virtual screening of chemical compounds was performed against modeled structure. The docking study by AutodockVina reported compound from PubChem with CID: 16036947 as best and potential inhibitor by means of docking score and binding affinity. The reliability and stability of the MurA‐16036947 complex were confirmed with molecular dynamics simulation. The report will provide insight to understand the mechanism of pathogenesis of Ott and instigate the development of effective treatment strategies against this disease.  相似文献   
132.
Curcumin, a natural compound has several antineoplastic activities and is a promising natural photosensitizer used in photodynamic therapy. However, its low solubility in physiological medium limit the clinical use of curcumin. This study aimed to analyze the action of curcumin-nanoemulsion, a new and well-designed Drug Delivery System (DDS+) molecule, used as a photosensitizing agent in photodynamic therapy in an in vitro breast cancer model, MCF-7 cells. The empty nanoemulsion fulfils all necessary requirements to be an excellent DDS. Furthermore, the use of curcumin-nanoemulsion in photodynamic therapy resulted in a high phototoxic effect after activation at 440?nm, decreasing to <10% viable tumor cells after two irradiations and increasing the reactive oxygen species (ROS) production. The use of curcumin-nanoemulsion associated with photodynamic therapy resulted in an increase in the levels of caspase 3/7 activity for the studied MCF-7 cell model, indicating that this therapy triggers a cascade of events that lead to cell death, such as cellular apoptosis. In conclusion, curcumin-nanoemulsion proved to be efficient as a photosensitizing agent, had phototoxic effects, significantly decreased the proliferation of MCF-7 cells and stimulating the ROS production in combination with photodynamic therapy, so, this formulation has a great potential for use in treatment of breast cancer.  相似文献   
133.
肺纤维化(pulmonary fibrosis, PF)是临床常见的一种慢性进行性呼吸系统疾病,以中晚期出现肺组织的纤维化为病变特征。由于肺纤维化病因复杂,其发病机制至今仍不明确,这也成为该疾病治疗的最大难点,并且由于该病的高死亡率,寻求有效的治疗方法迫在眉睫。随着现代分子生物学技术的广泛应用以及对该疾病的发生机制和病理生理变化研究的不断深入,发现AMPK、mTOR和JNK等相关信号通路以及ECM沉积和氧化应激等在肺纤维化发病机制中起着重要作用。因此,针对这些通路中的相关分子的靶点治疗将成为肺纤维化治疗的新趋势。本文旨在对肺纤维化治疗相关的细胞因子以及micro RNA分子靶点研究进展做一总结,为防治肺纤维化提供新的理论依据,同时为临床诊疗提供参考。  相似文献   
134.
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4?A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.  相似文献   
135.
急性心肌梗死是最常见的心血管疾病之一,由于冠状动脉供血不全导致心肌细胞大量坏死、生存微环境恶化,近期可发生心肌细胞机械-电生理功能紊乱,远期可导致心力衰竭。目前的临床治疗方法虽能在一定程度上改善心功能,减轻心室重塑,但由于心肌细胞再生能力有限,心脏功能难以完全恢复正常。近年来,脂肪来源干细胞移植治疗急性心肌梗死受到广泛关注,但由于移植后细胞的存留和存活率普遍较低,总体治疗效果并不理想。本文对目前脂肪来源干细胞治疗急性心肌梗死的现况及提高其疗效的途径和方法作一综述。  相似文献   
136.
Inhibition of animal cell phospholipid biosynthesis has been proposed for anticancer and antiviral therapies. Using CHOK1 derived cell lines, we have developed and used a cell-based high-throughput procedure to screen a 1280 compound, small molecule library for inhibitors of phospholipid biosynthesis. We identified tyrphostin AG 879 (AG879), which inhibited phospholipid biosynthesis by 85–90% at a concentration of 10 μM, displaying an IC50 of 1–3 μM. The synthesis of all phospholipid head group classes was heavily affected. Fatty acid biosynthesis was also dramatically inhibited (90%). AG879 inhibited phospholipid biosynthesis in all additional cell lines tested, including MDCK, HUH7, Vero, and HeLa cell lines. In CHO cells, AG879 was cytostatic; cells survived for at least four days during exposure and were able to divide following its removal. AG879 is an inhibitor of receptor tyrosine kinases (RTK) and inhibitors of signaling pathways known to be activated by RTK's also inhibited phospholipid biosynthesis. We speculate that inhibition of RTK by AG879 results in an inhibition of fatty acid biosynthesis with a resulting decrease in phospholipid biosynthesis and that AG879's effect on fatty acid synthesis and/or phospholipid biosynthesis may contribute to its known capacity as an effective antiviral/anticancer agent.  相似文献   
137.
The current novel corona virus illness (COVID-19) is a developing viral disease that was discovered in 2019. There is currently no viable therapeutic strategy for this illness management. Because traditional medication development and discovery has lagged behind the threat of emerging and re-emerging illnesses like Ebola, MERS-CoV, and, more recently, SARS-CoV-2. Drug developers began to consider drug repurposing (or repositioning) as a viable option to the more traditional drug development method. The goal of drug repurposing is to uncover new uses for an approved or investigational medicine that aren't related to its original use. The main benefits of this strategy are that there is less developmental risk and that it takes less time because the safety and pharmacologic requirements are met. The main protease (Mpro) of corona viruses is one of the well-studied and appealing therapeutic targets. As a result, the current research examines the molecular docking of Mpro (PDB ID: 5R81) conjugated repurposed drugs. 12,432 approved drugs were collected from ChEMBL and drugbank libraries, and docked separately into the receptor grid created on 5R81, using the three phases of molecular docking including high throughput virtual screening (HTVS), standard precision (SP), and extra precision (XP). Based on docking scores and MM-GBSA binding free energy calculation, top three drugs (kanamycin, sulfinalol and carvedilol) were chosen for further analyses for molecular dynamic simulations.  相似文献   
138.
The pharmaceutical industry is committed to marketing safer drugs with fewer side effects, predictable pharmacokinetic properties and quantifiable drug-drug interactions. Drug metabolism is a major determinant of drug clearance and interindividual pharmacokinetic differences, and an indirect determinant of the clinical efficacy and toxicity of drugs. Progressive advances in the knowledge of metabolic routes and enzymes responsible for drug biotransformation have contributed to understanding the great metabolic variations existing in human beings. Phenotypic as well genotypic differences in the expression of the enzymes involved in drug metabolism are the main causes of this variability. However, only a minor part of phenotypic variability in man is attributable to gene polymorphisms, thus making the definition of a normal liver complex. At present, the use of human in vitro hepatic models at early preclinical stages means that the process of selecting drug candidates is becoming much more rational. Cultured human hepatocytes are considered to be the closest model to human liver. However, the fact that hepatocytes are located in a microenvironment that differs from that of the cell in the liver raises the question: to what extent does drug metabolism variability observed in vitro actually reflect that of the liver in vivo? By comparing the metabolism of a model compound both in vitro and in vivo in the same individual, a good correlation between the in vitro and in vivo relative abundance of oxidized metabolites and the hydrolysis of the compound was observed. Thus, it is reasonable to consider that the variability observed in human hepatocytes reflects the existing phenotypic heterogeneity of the P450 expression in human liver.  相似文献   
139.
The recent developments in the isolation, culturing, and cryopreservation of human hepatocytes, and the application of the cells in drug development are reviewed. Recent advances include the improvement of cryopreservation procedures to allow cell attachment, thereby extending the use of the cells to assays that requires prolong culturing such as enzyme induction studies. Applications of human hepatocytes in drug development include the evaluation of metabolic stability, metabolite profiling and identification, drug-drug interaction potential, and hepatotoxic potential. The use of intact human hepatocytes, because of the complete, undisrupted metabolic pathways and cofactors, allows the development of data more relevant to humans in vivo than tissue fractions such as human liver microsomes. Incorporation of key in vivo factors with the intact hepatocytes in vitro may help predictive human in vivo drug properties. For instance, evaluation of drug metabolism and drug-drug interactions with intact human hepatocytes in 100% human serum may eliminate the need to determine in vivo intracellular concentrations for the extrapolation of in vitro data to in vivo. Co-culturing of hepatocytes and nonhepatic primary cells from other organs in the integrated discrete multiple organ co-culture (IdMOC) may allow the evaluation of multiple organ interactions in drug metabolism and drug toxicity. In conclusion, human hepatocytes represent a critical experimental model for drug development, allowing early evaluation of human drug properties to guide the design and selection of drug candidates with a high probability of clinical success.  相似文献   
140.
Tumors are usually exposed to a hypoxic microenvironment due to their irregular growth and abnormal vascular supply. Under hypoxia, gene regulation (selective activation and inactivation of genes) plays an important role in maintenance of tumor. Multiple hypoxic and angiogenic growth factors are expressed for tumor cell survival. In search of novel anticancer drug, Semecarpus anacardium nut extract (SA) was tried against breast cancer. Mammary carcinoma was induced in vivo by 7,12-dimethyl benz(a) anthracene (DMBA) (25mg/kg b.w., p.o.). Tumor development and vascular structures were accelerated by DMBA. Hypoxia inducible factor-1 alpha (HIF-1) was coexpressed with its downstream genes in mammary tissue. Cancer rats were then treated with S. anacardium nut extract (SA) (250mg/kg b.w., p.o.). Delay in the tumor growth was paralleled with a drastic reduction in vascularization by SA treatment. Activities of glycolytic enzymes were normalized with decreased expression of glucose transporter-1 and carbonic anhydrase IX by drug treatment. Inhibition of HIF-1, vascular endothelial growth factor and inducible nitric oxide synthase by SA may in part explain its antiangiogenic action. SA also inhibits endothelial cell proliferation by blocking the overexpressed survival cytokines. In conclusion, our study demonstrates that at least some part of the antitumor activity of SA is due to the suppression of hypoxic and angiogenic factors. The mechanism of this inhibition seems to be through an action of SA on expression of HIF-1 and its downstream targets.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号