首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3153篇
  免费   153篇
  国内免费   55篇
  3361篇
  2024年   3篇
  2023年   34篇
  2022年   85篇
  2021年   104篇
  2020年   111篇
  2019年   142篇
  2018年   148篇
  2017年   98篇
  2016年   85篇
  2015年   83篇
  2014年   300篇
  2013年   299篇
  2012年   229篇
  2011年   317篇
  2010年   231篇
  2009年   162篇
  2008年   143篇
  2007年   132篇
  2006年   109篇
  2005年   88篇
  2004年   75篇
  2003年   63篇
  2002年   68篇
  2001年   28篇
  2000年   18篇
  1999年   21篇
  1998年   15篇
  1997年   17篇
  1996年   10篇
  1995年   6篇
  1994年   13篇
  1993年   10篇
  1992年   11篇
  1991年   10篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   13篇
  1983年   16篇
  1982年   8篇
  1981年   9篇
  1980年   6篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   4篇
  1973年   2篇
排序方式: 共有3361条查询结果,搜索用时 15 毫秒
81.
目的 观察亚抑菌浓度(亚-MIC)穿心莲内酯及其与红霉素联用对表皮葡萄球菌生物膜形成的影响.方法 连续稀释法测定穿心莲内酯和红霉素对表皮葡萄球菌的MIC;棋盘格法测定穿心莲内酯和红霉素联用对表皮葡萄球菌悬浮菌的作用;体外构建表皮葡萄球菌生物膜,XTT减低法评价亚-MIC穿心莲内酯及与红霉素联用对表皮葡萄球菌生物膜内细菌代谢及初始黏附能力的影响,扫描电镜观察用药后表皮葡萄球菌形态和生物膜结构改变.结果 穿心莲内酯对表皮葡萄球菌悬浮菌的MIC大于1000 mg/L,穿心莲内酯和红霉素联用对表皮葡萄球菌悬浮菌的FIC指数(联合抑菌分数)>2;亚抑菌浓度穿心莲内酯对表皮葡萄球菌生物膜黏附及膜内菌代谢均有抑制作用;穿心莲内酯和红霉素联用对表皮葡萄球菌的黏附能力的影响表现为协同作用,对悬浮菌和膜内菌代谢作用表现为拮抗.结论 亚抑菌浓度穿心莲内酯对表皮葡萄球菌生物膜黏附及膜内菌代谢均有抑制作用;穿心莲内酯和红霉素联用对表皮葡萄球菌悬浮菌及膜内菌代谢存在拮抗,提示临床治疗表皮葡萄球菌感染时应避免同时使用这两种药物.  相似文献   
82.
张韻慧  王春杰  晋兴华  张旺  张崧 《生物磁学》2013,(34):6619-6622,6706
目的:通过研究不同促透剂对吲哚关辛水凝胶贴剂透皮性能的影响,遴选在特定栽药剂量时具有最佳促透效果的促透剂,并与市售贴剂进行比较,对吲哚美辛水凝胶贴剂的体外透皮性能进行评价。方法:采用改良Franz透皮扩散池,以离体小鼠背部皮肤为透皮屏障,在最佳载药量选用不同浓度的氮酮、油酸、丙二醇以及三者组成的二元或三元组合为促透剂,在规定时间点测定吲哚美辛的累积透过百分率以及单位面积累积透过量。结果:与空白对照组相比,当氮酮与油酸单独应用时,二者均没有明显的促透作用;当选用二元促透剂联合应用时,油酸与丙二醇联用能够明显促进吲哚美辛的经皮渗透(P〈0.05);当选用三元促透剂时促透效果更好,单位面积累积透过量最高可达234.4μg·cm^-2,24h内药物累积透过百分率明显高于市售贴剂。结论:氮酮、油酸、丙二醇三者联合应用可作为吲哚关辛贴剂的理想促透剂。吲哚关辛水凝胶贴剂是具有应用价值的新型经皮控释制剂。  相似文献   
83.
The aim of this study was to establish a new tool for screening surface displayed peptide libraries based on the idea that cells expressing an enzyme inhibitor at the surface can be specifically labeled by the target enzyme. For this purpose peptide P15, exhibiting a K(i) value of 0.25 microM toward human cathepsin G, was expressed on the Escherichia coli cell surface by the use of Autodisplay. Purified cathepsin G was coupled to biotin and incubated with cells expressing the inhibitor. After addition of streptavidin-fluorescein isothiocyanate, these cells could be clearly differentiated from control cells by whole-cell fluorescence using flow cytometer analysis. To determine whether this protocol can be used for the sorting of single cells, a mixed population of cells with and without inhibitor was treated accordingly. Single cells were selected by increased fluorescence and sorted using fluorescence-activated cell sorting (FACS). Single cell clones were obtained and subjected to DNA sequence analysis. It turned out that the bacteria selected by this protocol displayed the correct peptide inhibitor at the cell surface. The protocol was then used to screen random peptide libraries, expressed at the cell surface, and a new lead structure for human cathepsin G (IC50 = 11.7 microM) was identified. The new drug discovery tool presented here consists of three steps: (a) surface display of peptide libraries, (b) selection of single cells with inhibiting structures by using the inherent affinity of the target enzyme, and (c) sorting of single cells, which were labeled by FACS.  相似文献   
84.
Organoids are in vitro cultures of miniature fetal or adult organ-like structures. Their potentials for use in tissue and organ replacement, disease modeling, toxicology studies, and drug discovery are tremendous. Currently, major challenges facing human organoid technology include (i) improving the range of cellular heterogeneity for a particular organoid system, (ii) mimicking the native micro- and matrix-environment encountered by cells within organoids, and (iii) developing robust protocols for the in vitro maturation of organoids that remain mostly fetal-like in cultures. To tackle these challenges, we advocate the principle of reverse engineering that replicates the inner workings of in vivo systems with the goal of achieving functionality and maturation of the resulting organoid structures with the input of minimal intrinsic (cellular) and environmental (matrix and niche) constituents. Here, we present an overview of organoid technology development in several systems that employ cell materials derived from fetal and adult tissues and pluripotent stem cell cultures. We focus on key studies that exploit the self-organizing property of embryonic progenitors and the role of designer matrices and cell-free scaffolds in assisting organoid formation. We further explore the relationship between adult stem cells, niche factors, and other current developments that aim to enhance robust organoid maturation. From these works, we propose a standardized pipeline for the development of future protocols that would help generate more physiologically relevant human organoids for various biomedical applications.  相似文献   
85.
Protein therapeutics and its enabling sister discipline, protein engineering, have emerged since the early 1980s. The first protein therapeutics were recombinant versions of natural proteins. Proteins purposefully modified to increase their clinical potential soon followed with enhancements derived from protein or glycoengineering, Fc fusion or conjugation to polyethylene glycol. Antibody-based drugs subsequently arose as the largest and fastest growing class of protein therapeutics. The rationale for developing better protein therapeutics with enhanced efficacy, greater safety, reduced immunogenicity or improved delivery comes from the convergence of clinical, scientific, technological and commercial drivers that have identified unmet needs and provided strategies to address them. Future protein drugs seem likely to be more extensively engineered to improve their performance, e.g., antibodies and Fc fusion proteins with enhanced effector functions or extended half-life. Two old concepts for improving antibodies, namely antibody-drug conjugates and bispecific antibodies, have advanced to the cusp of clinical success. As for newer protein therapeutic platform technologies, several engineered protein scaffolds are in early clinical development and offer differences and some potential advantages over antibodies.  相似文献   
86.
Basic fibroblast growth factor (bFGF) is a therapeutic target of anti-angiogenesis. Here, we report that a novel sulfated glycopeptide derived from Gekko swinhonis Guenther (GSPP), an anticancer drug in traditional Chinese medicine, inhibits tumor angiogenesis by targeting bFGF. GSPP significantly decreased the production of bFGF in hepatoma cells by suppressing early growth response-1. GSPP inhibited the release of bFGF from extracellular matrix by blocking heparanase enzymatic activity. Moreover, GSPP competitively inhibited bFGF binding to heparin/heparan sulfate via direct binding to bFGF. Importantly, GSPP abrogated the bFGF-stimulated proliferation and migration of endothelial cells, whereas it had no inhibitory effect on endothelial cells in the absence of bFGF. Further study revealed that GSPP prevented bFGF-induced neovascularization and inhibited tumor angiogenesis and tumor growth in a xenograft mouse model. These results demonstrate that GSPP inhibits tumor angiogenesis by blocking bFGF production, release from the extracellular matrix, and binding to its low affinity receptor, heparin/heparan sulfate.  相似文献   
87.
Diabodies (Dbs) and tandem single-chain variable fragments (taFv) are the most widely used recombinant formats for constructing small bispecific antibodies. However, only a few studies have compared these formats, and none have discussed their binding kinetics and cross-linking ability. We previously reported the usefulness for cancer immunotherapy of a humanized bispecific Db (hEx3-Db) and its single-chain format (hEx3-scDb) that target epidermal growth factor receptor and CD3. Here, we converted hEx3-Db into a taFv format to investigate how format affects the function of a small bispecific antibody; our investigation included a cytotoxicity assay, surface plasmon resonance spectroscopy, thermodynamic analysis, and flow cytometry. The prepared taFv (hEx3-taFv) showed an enhanced cytotoxicity, which may be attributable to a structural superiority to the diabody format in cross-linking target cells but not to differences in the binding affinities of the formats. Comparable cross-linking ability for soluble antigens was observed among hEx3-Db, hEx3-scDb, and hEx3-taFv with surface plasmon resonance spectroscopy. Furthermore, drastic increases in cytotoxicity were found in the dimeric form of hEx3-taFv, especially when the two hEx3-taFv were covalently linked. Our results show that converting the format of small bispecific antibodies can improve their function. In particular, for small bispecific antibodies that target tumor and immune cells, a functional orientation that avoids steric hindrance in cross-linking two target cells may be important in enhancing the growth inhibition effect.  相似文献   
88.
The lack of methods to identify Mycobacterium leprae with the resistance against multi-drugs quickly and specifically has hindered effective chemotherapy against M. leprae infection. To screen M. leprae with resistance against multi-drugs, the Touch-Down (TD)-PCR has been used in this study. Sequences of the folP, rpoA, B, and gyrA, B genes were analyzed for isolates of M. leprae from leprosy patients in Korea. We amplified designated region of several genes in M. leprae involved in drug resistance and could obtain the PCR products of each gene. The mutations in the particular region of folP, rpoB, and gyrB gene were certified by TD-PCR single-stranded conformational polymorphism and DNA sequencing, respectively.  相似文献   
89.
目的 探讨住院患者多重耐药菌感染情况与病原学特点,为临床制定医院感染控制措施提供参考依据.方法 对住院患者中的多重耐药菌感染及病原特点情况进行统计分析.结果 住院患者多重耐药菌感染发生率为3.5%,主要为革兰阴性菌(71.5%),多重耐药菌居前7位的依次是大肠埃希菌、肺炎克雷伯菌、鲍曼不动杆菌、铜绿假单胞菌、凝固酶阴性葡萄球菌、肠球菌属、金黄色葡萄球菌等.多重耐药菌感染的患者主要来自于重症监护室、神经外科、呼吸内科等.多重耐药菌对选用的抗生素均有较高的耐药性.结论 多重耐药菌耐药率普遍较高,临床医师应重视病原学检查及药敏监测,合理选择使用抗菌药物.  相似文献   
90.
SIRT1 is a protein deacetylase that has emerged as a therapeutic target for the development of activators to treat diseases of aging. SIRT1-activating compounds (STACs) have been developed that produce biological effects consistent with direct SIRT1 activation. At the molecular level, the mechanism by which STACs activate SIRT1 remains elusive. In the studies reported herein, the mechanism of SIRT1 activation is examined using representative compounds chosen from a collection of STACs. These studies reveal that activation of SIRT1 by STACs is strongly dependent on structural features of the peptide substrate. Significantly, and in contrast to studies reporting that peptides must bear a fluorophore for their deacetylation to be accelerated, we find that some STACs can accelerate the SIRT1-catalyzed deacetylation of specific unlabeled peptides composed only of natural amino acids. These results, together with others of this study, are at odds with a recent claim that complex formation between STACs and fluorophore-labeled peptides plays a role in the activation of SIRT1 (Pacholec, M., Chrunyk, B., Cunningham, D., Flynn, D., Griffith, D., Griffor, M., Loulakis, P., Pabst, B., Qiu, X., Stockman, B., Thanabal, V., Varghese, A., Ward, J., Withka, J., and Ahn, K. (2010) J. Biol. Chem. 285, 8340–8351). Rather, the data suggest that STACs interact directly with SIRT1 and activate SIRT1-catalyzed deacetylation through an allosteric mechanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号