首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5690篇
  免费   608篇
  国内免费   1495篇
  2024年   46篇
  2023年   200篇
  2022年   255篇
  2021年   310篇
  2020年   258篇
  2019年   301篇
  2018年   276篇
  2017年   284篇
  2016年   347篇
  2015年   302篇
  2014年   418篇
  2013年   444篇
  2012年   319篇
  2011年   308篇
  2010年   227篇
  2009年   313篇
  2008年   349篇
  2007年   345篇
  2006年   297篇
  2005年   267篇
  2004年   210篇
  2003年   184篇
  2002年   163篇
  2001年   115篇
  2000年   134篇
  1999年   101篇
  1998年   99篇
  1997年   166篇
  1996年   75篇
  1995年   76篇
  1994年   54篇
  1993年   60篇
  1992年   56篇
  1991年   45篇
  1990年   43篇
  1989年   45篇
  1988年   28篇
  1987年   41篇
  1986年   38篇
  1985年   27篇
  1984年   30篇
  1983年   25篇
  1982年   28篇
  1981年   13篇
  1980年   10篇
  1979年   9篇
  1978年   10篇
  1977年   10篇
  1976年   9篇
  1975年   13篇
排序方式: 共有7793条查询结果,搜索用时 15 毫秒
961.
Morphological and physiological characteristics of leaves from plant species collected in steppe communities in the various climatic zones in Eurasia were compared. The changes in leaf structure correlated with the major climatic factors. The mean thickness of leaves increased with increasing mean temperature of July and decreasing mean precipitation, which corresponded to aridity increase. The increased leaf thickness correlated with an increase in the specific leaf weight. The content of chlorophylls (a + b) in leaves greatly varied with plant habitats, whereas the chlorophyll a/b ratio remained unchanged. The chlorophyll content in leaf tissues had a general tendency to decrease with increasing leaf thickness. The leaf chlorophyll content positively correlated (R 2 = 0.77) with the proportion of chlorenchyma in leaf tissues. It is concluded that steppe plants adapt to climate aridization at the structural level by increasing the proportion of protective heterotrophic components of the leaf without changing the functional activity of photosynthetic tissues.  相似文献   
962.
Assessments of the impacts of environmental hazards on ecological systems and human health have become a subject of ever-increasing importance. In this work, we extend current ecological hazard evaluation to the problem of protecting cultural relics from hazards attributable to the presence of a large-scale canal system being planned in China. The development and utilization of water resources must be closely combined with the preservation of cultural relics. The Middle Route Project for Water Transfer from South to North China (MRWT) is a current example. In this paper, the engineering background of this project is briefly introduced. The distribution of cultural relics related to it is also summarized in terms of different geographical divisions. An influence index E = f(L, δh, k, I, v, s) is introduced to measure the comprehensive effect of the canal on cultural relics. Because this function is really established at the preconstruction stage, it is treated by use of fuzzy mathematics. Each cultural relic has its own E value. Cultural relics with E values greater than 0.75 should be paid high attention, while those with E less than 0.5 may generally be ignored. What must be preserved through use of engineering measures are cultural relics with E values greater than 0.9. As to those cultural relics with E ranging between 0.5 and 0.75, whether they should be preserved with engineering controls depends upon practical circumstances specific to each relic.  相似文献   
963.
Aim We present the first global synthesis of plant canopy leaf area index (LAI) measurements from more than 1000 published estimates representing ~400 unique field sites. LAI is a key variable for regional and global models of biosphere‐atmosphere exchanges of energy, carbon dioxide, water vapour, and other materials. Location The location is global, geographically distributed. Results Biomes with LAI values well represented in the literature included croplands, forests and plantations. Biomes not well represented were deserts, shrublands, tundra and wetlands. Nearly 40% of the records in the database were published in the past 10 years (1991–2000), with a further 20% collected between 1981 and 1990. Mean (± SD) LAI, distributed between 15 biome classes, ranged from 1.3 ± 0.9 for deserts to 8.7 ± 4.3 for tree plantations, with temperate evergreen forests (needleleaf and broadleaf) displaying the highest average LAI (5.1–6.7) among the natural terrestrial vegetation classes. Following a statistical outlier analysis, the global mean (± SD) LAI decreased from 5.2 (4.1) to 4.5 (2.5), with a maximum LAI of 18. Biomes with the highest LAI values were plantations > temperate evergreen forests > wetlands. Those with the lowest LAI values were deserts < grasslands < tundra. Mean LAI values for all biomes did not differ statistically by the methodology employed. Direct and indirect measurement approaches produced similar LAI results. Mean LAI values for all biomes combined decreased significantly in the 1990s, a period of substantially more studies and improved methodologies. Main conclusions Applications of the LAI database span a wide range of ecological, biogeochemical, physical, and climate research areas. The data provide input to terrestrial ecosystem and land‐surface models, for evaluation of global remote sensing products, for comparisons to field studies, and other applications. Example uses of the database for global plant productivity, fractional energy absorption, and remote sensing studies are highlighted.  相似文献   
964.
The application of high hydrostatic pressure is an effective tool to promote dissolution and refolding of protein from aggregates and inclusion bodies while minimizing reaggregation. In this study we explored the mechanism of high-pressure protein refolding by quantitatively assessing the magnitude of the protein-protein interactions both at atmospheric and elevated pressures for T4 lysozyme, in solutions containing various amounts of guanidinium hydrochloride. At atmospheric pressure, the protein- protein interactions are most attractive at moderate guanidinium hydrochloride concentrations (approximately 1-2 molar), as indicated by a minimum in B(22) values. In contrast, at a pressure of 1,000 bar no minimum in B(22) values is observed, indicating that high pressures colloidally stabilize protein against aggregation. Finally, experimental values of refractive index increments as a function of pressure indicate that at high pressures, wetting of the hydrophobic surfaces is favored, resulting in a reduction of the hydrophobic effect. This reduction in the hydrophobic effect reduces the driving force for aggregation of (partially) unfolded protein.  相似文献   
965.
Animal vocalizations play an important role in individual recognition, kin recognition, species recognition, and sexual selection. Despite much work in these fields done on birds virtually nothing is known about the heritability of vocal traits in birds. Here, we study a captive population of more than 800 zebra finches ( Taeniopygia guttata ) with regard to the quantitative genetics of call and song characteristics. We find very high heritabilities in nonlearned female call traits and considerably lower heritabilities in male call and song traits, which are learned from a tutor and hence show much greater environmental variance than innate vocalizations. In both sexes, we found significant heritabilities in several traits such as mean frequency and measures of timbre, which reflect morphological characteristics of the vocal tract. These traits also showed significant genetic correlations with body size, as well as positive genetic correlations between the sexes, supporting a scenario of honest signaling of body size through genetic pleiotropy ("index signal"). In contrast to such morphology-related voice characteristics, classical song features such as repertoire size or song length showed very low heritabilities. Hence, these traits that are often suspected to be sexually selected would hardly respond to current directional selection.  相似文献   
966.
The distribution of a phenotypic state is often discontinuous and dispersed. An example of such a distribution can be found in the shell shapes of terrestrial gastropods, which exhibit a bimodal distribution whereby species possess either a tall shell or a flat shell. Here we propose a simple model to test the hypothesis that the bimodal distribution relates to the optimum shape for shell balance on the substrates. This model calculates the theoretical shell balance by moment and obtains empirical distribution of shell shape by compiling published data and performing a new analysis. The solution of the model supports one part of the hypothesis, showing that a low-spired shell is the best balanced and is better suited for locomotion on horizontal surface. Additionally, the model shows that both high- and low-spired shells are well balanced and suited on vertical surfaces. The shell with a spire index (shell height divided by diameter) of 1.4 is the least well balanced as a whole. Thus, spire index is expected to show a bimodal distribution with a valley at 1.4. This expectation was supported by empirical distribution of a spire index, suggesting that the bimodality of shell shape in terrestrial gastropods is related to shell balance.  相似文献   
967.

Background

Heme oxidative degradation has been extensively investigated in peroxidases but not in catalases. The verdoheme formation, a product of heme oxidation which inactivates the enzyme, was studied in Proteus mirabilis catalase.

Methods

The verdoheme was generated by adding peracetic acid and analyzed by mass spectrometry and spectrophotometry.

Results

Kinetics follow-up of different catalase reactional intermediates shows that i) the formation of compound I always precedes that of verdoheme, ii) compound III is never observed, iii) the rate of compound II decomposition is not compatible with that of verdoheme formation, and iv) dithiothreitol prevents the verdoheme formation but not that of compound II, whereas NADPH prevents both of them. The formation of verdoheme is strongly inhibited by EDTA but not increased by Fe3+ or Cu2+ salts. The generation of verdoheme is facilitated by the presence of protein radicals as observed in the F194Y mutated catalase. The inability of the inactive variant (H54F) to form verdoheme, indicates that the heme oxidation is fully associated to the enzyme catalysis.

Conclusion

These data, taken together, strongly suggest that the verdoheme formation pathway originates from compound I rather than from compound II.

General significance

The autocatalytic verdoheme formation is likely to occur in vivo.  相似文献   
968.
969.
Switchgrass (Panicum virgatum L.), a native of eastern and central North America, is a leading candidate as a dedicated biofuel feedstock in the US due to its broad adaptability, rapid growth rate, and ability to grow in low production soils. To begin to characterize the important agronomic and ecological traits related to environmental tolerance of switchgrass, we evaluated fitness under stressful growing conditions. We assessed the germination, establishment, performance, and reproductive potential of four common accessions, both upland and lowland ecotypes, at various levels of soil moisture availability (moisture deficit to flooded) in the greenhouse. Seeds emerged and established (55–90% survival) under all soil moisture conditions (−0.3 MPa to flooded). Transplants of lowland ecotypes performed as well in flooded conditions as in field capacity controls, though flooding reduced performance of upland ecotypes. Drought treatments (−4.0 and −11.0 MPa) reduced tiller length and number, leaf area, and biomass production by up to 80%. However, once established, all plants survived at −4.0 MPa and had the same proportion of tillers in flower as at field capacity. The ability of switchgrass to germinate, establish, and flower in low moisture and flooded conditions, particularly lowland ecotypes, may increase the range of environments suitable for biofuel cultivation, and can serve as a baseline for further ecological studies and genetic improvement.  相似文献   
970.
We conducted a night-time warming and drought field experiment for 7 years (1999–2005) in a Mediterranean shrubland. We focused on the two dominant shrub species, Erica multiflora L. and Globularia alypum L. and the tree Pinus halepensis L. and the final years to study the effects of the experimental night-time warming and drought on Fv/Fm, photosynthesis, and stomatal conductance. Warming treatment increased mean air temperature and mean soil temperature through the years by an average of 0.7 and 0.9°C respectively, and drought treatment reduced soil moisture through the years by an average of 19%. Warming tended to increase photosynthetic rates in E. multiflora, G. alypum and P. halepensis mostly in the cold seasons, when plants were more limited by temperature, as shown by the lowest values of Fv/Fm being detected in winter in the three studied species. A negative effect of warming was only detected for E. multiflora in summer 2003. Drought treatment generated different responses of net photosynthetic rates depending on the species, season and year. Stomatal conductance showed the same pattern as photosynthesis for the three studied species, displaying seasonal and inter-annual variability, although with an overall negative effect of drought for P. halepensis. Photosynthetic rates decreased significantly in the dry winter 2005 and spring 2005 in comparison to the same seasons of 2003 and 2004. There were positive correlations between the photosynthetic rates in different seasons for E. multiflora, G. alypum and P. halepensis and the soil moisture of the week prior to measurements. The great variation in the photosynthetic rates was thus explained in a significant part by soil moisture levels. The lowest Fv/Fm values usually corresponded with lowest stomatal conductances suggesting that drought stress could be associated to stress by low temperatures in winter.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号